
Transform Coding of Audio Impulse
Responses

J. van der Vorm

M.Sc. Thesis

Laboratory of Acoustical Imaging and Sound Control

Department of Imaging Science and Technology

Faculty of Applied Sciences

Delft University of Technology

Professor: Prof. dr. ir. A. Gisolf

Supervisor: dr. ir. D. de Vries

Delft, August 2003



ii



c
�

Copyright 2003 The Laboratory of Acoustical Imaging and Sound Control

All rights reserved. No parts of this publication may be reproduced, stored in a re-

trieval system, or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without prior written permission of the au-

thor or The Laboratory of Acoustical Imaging and Sound Control.

iii



iv



Graduation

Committee:

dr. ir. D. de Vries

Laboratory of Acoustical Imaging and Sound Control

Department of Imaging Science and Technology

Delft University of Technology

prof. dr. ir. A. Gisolf

Laboratory of Seismics and Acoustics

Department of Imaging Science and Technology

Delft University of Technology

prof. dr. ir. L.J. van Vliet

Pattern Recognition Group

Department of Imaging Science and Technology

Delft University of Technology

dr. ir. R. Heusdens

Information and Communication Theory Group

Faculty of Information Technology and Systems

Delft University of Technology

dr. ir. D.J. Verschuur

Laboratory of Seismics and Acoustics

Department of Imaging Science and Technology

Delft University of Technology

drs. E. Hulsebos

Laboratory of Acoustical Imaging and Sound Control

Department of Imaging Science and Technology

Delft University of Technology

v



vi



Abstract

The main objective of the EU sponsored Carrouso project is to specify, develop and im-

plement a new technology that can be used to transfer a sound field, generated in a real

or virtual space, to a different space, preferably with full control over perceptually rele-

vant spatial and temporal properties. The goal of this thesis can be seen as part of this:

how can the amount of data that defines an ’acoustic environment’ be reduced, such

that it is usable for transport. Reduction is possible by using perceptual irrelevancies

of the so called impulse responses, defining an ’acoustic environment’. The underlying

technology is for a large part developed to compress music and speech signals, as can

be found in audio codecs as MP3 and AAC.

The foundation for the recording- and playback side of the Carrouso-project is Wave

Field Synthesis (WFS). The WFS technique is started by TU Delft and uses loudspeaker

arrays to generate wave fronts. One of the possible methods uses dry recording (no

reflections, echo or other influence of the enclosure on the signal) and does the play-

back with the help of a set of impulse responses. One impulse response consists of

three parts, the direct sound peak, the early reflections and the reverberation tail. To re-

construct a soundfield, a set of impulse responses is convolved with the dry recording.

Performing convolution over a large number of channels is computationally intensive

or can cause a certain delay in playback (depending on the use of the convolution the-

orem), therefore the partitioned convolution is explained and used as a trade-off.

As the human ear can not analyze all components of a soundfield large parts of of au-

dio data can be thrown away, without changing the subjective experience of a listener.

Examples of properties of the human ear usable for this information reduction are the

’absolute threshold of hearing’, the existence of critical bands and the masking of sound

in the frequency and time domain. To exploit these properties a part of the compression

calculation must be done in the frequency domain. The ’modulated lapped transform’

is an appropriate transform to convert a signal to the frequency domain, because it has,
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other than the discrete Fourier transform, no block-edge effects; it is critically sampled

and together with the proper filterbanks its time domain aliasing cancellation leads to

perfect reconstruction.

To develop an impulse response compression method, various techniques can be used.

Sonke [1] has worked on a method for such compression. His method splits the impulse

response in various frequency bands with the Patterson windows. The signal is then in-

tegrated over small time slices to reach the final output coefficients. To reconstruct the

original impulse response a white noise signal is used. In this thesis a compression

scheme is developed, which uses a reverse approach, more analog to audio compres-

sion methods. The signal is first transformed to the frequency domain in blocks of a

certain length with the above mentioned ’modulated lapped transform’. Then the spec-

trum is saved with one parameter per critical frequency band. The block lengths are

unequally divided between the early reflections and the reverberation tail of the im-

pulse response.

This last compression model has been tested with a perceptual listening test, involv-

ing twenty volunteers. Results of this test show that the developed model works well

for impulse responses with a relatively large amount of reverberation, but works less

for impulse responses with almost no reverberation. It seems that careful choosing of

the free parameters in the model, such as the size of the windows and the number of

early reflections encoded separately, can increase the quality of the reconstruction. It

can be concluded that the data stream that defines an ’acoustic environment’ can be

decreased with at least a factor 150, without changing the subjective experience of the

listener.

viii



Samenvatting

Het door de EU gesponsorde Carrousso project streeft ernaar om een nieuwe tech-

nologie te specificeren, ontwikkelen en implementeren die gebruikt kan worden om

een geluidsveld, gegenereerd in een werkelijke of virtuele ruimte te kunnen verplaat-

sen naar een andere ruimte, liefst met volledige controle over de perceptueel relevante

spatiële en temporele eigenschappen. Dit afstudeeronderzoek kan worden gezien als

een onderdeel van het Carrouso project en houdt zich bezig met de vraag hoe de ho-

eveelheid data die een ’akoestische omgeving’ definieert zodanig kan worden vermin-

dert, dat deze hanteerbaar wordt voor tranpsort. Dit wordt gedaan door gebruik te

maken van perceptuele irrelevantie in de zogenaamde impuls responsies die een ’akoestis-

che omgeving’ definiëren. De onderliggende technologie is grotendeels ontwikkeld om

muziek en spraak te comprimeren, zoals gedaan wordt bij de MP3- en AAC-compressie-

technieken.

Aan de opname- en weergavetechniek gebruikt in het Carousso-project ligt golfveldsyn-

these ten grondslag. De goldveldsynthese techniek is ontwikkeld aan de TU Delft en

werkt door middel van het genereren van geluidsgolven met behulp van luidsprekerar-

rays. Eén van de methoden maakt gebruikt van een ’droog geluid’ opname (geen reflec-

ties, echo of andere invloed van de ruimte op het geluid) en geeft dit weer met behulp

van een set impuls responsies, samen de ’akoestische omgeving’ genoemd. Eén im-

puls responsie kan worden opgevat als bestaande uit drie delen: het directe geluid, de

vroege reflecties en de galmstaart. Om nu een golfveld weer te geven wordt een set im-

puls responsies geconvolueerd met de droge opname. Wanneer een convolutie over

veel kanalen tegelijk uitgevoerd wordt, is dat behoorlijk rekenintensief en veroorza-

akt tevens vertraging in weergave. Gepartitioneerde convolutie is daarom geschikt als

tussenoplossing.

Het menselijk gehoor heeft diverse eigenschappen die het mogelijk maken om een gedeelte

van data die een geluidsveld defininieert weg te gooien, zonder dat dit de subjectieve
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x Samenvatting

waarneming van de luisteraar beı̈nvloed. Voorbeelden van deze eigenschappen zijn on-

der andere de ’absoluut drempelwaarde van het gehoor’, het bestaan van kritische fre-

quentiebanden en het maskeren van het geluid in het frequentie- en in het tijd-domein.

Om dit uit te buiten moet een gedeelte van de compressie-berekeningen gedaan wor-

den in het frequentie-domein. De ’modulated lapped transform’ is een geschikte trans-

formatie voor conversie van een signaal naar het frequentie-domein. Deze transfor-

matie heeft, bijvoorbeeld in tegenstelling tot de discrete Fourier transformatie, geen last

van blok-band effecten en kent kritische sampling. Hierdoor kan samen met de juiste

filterbanken door middel van ’time domain aliasing cancellation’ perfecte reconstructie

plaatsvinden.

Om een impuls responsie compressie methode te ontwikkelen, kunnen verschillende

technieken gebruikt worden. Sonke [1] heeft hier waarschijnlijk als eerste aan gewerkt.

Zijn methode splitst eerst de impuls responsie in diverse frequentiebanden met be-

hulp van Patterson-windows. Dit gewindowde signaal wordt dan in stukjes over de tijd

geı̈ntegreerd om de uiteindelijke uitgangscoëfficienten te verkrijgen. Voor reconstruc-

tie van deze coëfficienten tot een impuls responsie, wordt gebruik gemaakt van een

Gaussisch ruissignaal. In het kader van dit afstudeeronderzoek is een compressiemeth-

ode ontwikkeld die omgekeert werkt, meer analoog aan de bestaande audio compressie

methoden. Het signaal wordt eerst per blok omgezet in het frequentiedomein, met

bovengenoemde ’modulated lapped transform’ en vervolgens wordt het spectrum opges-

lagen met één uitgangscoëfficient per kritische frequentieband. De lengte van de blokken

wordt ongelijk verdeeld over de vroege reflecties en galmstaart van de impulsresponsie.

Dit laatste compressiemodel is getest met behulp van een perceptuele luistertest on-

der twintig vrijwilligers. Hieruit blijkt dat het compressiemodel een goed model is voor

impuls responsies met relatief veel galm, maar minder goed werkt voor impulsrespon-

sies met weinig galm. Verder bleek dat het zorgvuldig kiezen van de vrije parameters

in het model, zoals de grootte van de gebruikte windows en het aantal apart opgesla-

gen reflecties, de resultaten kan optimalizeren. Uiteindelijk kan de datastroom die een

’akoestische omgeving’ definieert met een factor 150 verminderd worden, zonder dat

de luisteraar een duidelijk verschil merkt.
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Chapter 1

Introduction

1.1 Context of this thesis

In 2001 the EU sponsored Carrouso project started for the specification, development,

implementation and validation of new technology of three dimensional audio. Car-

rouso stands for Creative, Assessing and Rendering in real-time of high-quality audio-

visual environments in MPEG-4 context. The idea for the underlying WFS technology

originated from one of the partners in this project, TU Delft. WFS (Wave Field Synthe-

sis) is a method for temporal and spatial reproduction of a sound field [20]. The Car-

rouso project aims at combining WFS with the flexible MPEG-4 standard. This MPEG-4

standard serves as a container for audio data and defines a number of techniques help-

ing to transport audio in a compressed way.

This research project is not an official part of the Carrouso project. However, it shows a

nice overlap between the two parts of the Carrouso project. The compression of audio

impulse responses using perceptual analysis provides a lot of advantages for the im-

plementation of a WFS-based reproduction system. Also, the coding of audio impulse

responses shares a lot of ideas with the compression of digital music and speech, a task

which was standardized by the first incarnation of MPEG.

1.2 Transform coding of impulse responses

Digital storage and playback of music became mainstream when the Compact Disc

(CD) was introduced in 1986. Drawback of the digital representation of audio in this

way is the high data rate. Conventional audio Cd’s are sampled with 44.1 KHz in 16

7



8 Chapter 1: Introduction

bits, thus delivering approximately 700 kbps of data. Nowadays a lot of digital audio is

downloaded or streamed from networks as the internet or the mobile telephone net-

work. Data rates, such as those from a Cd, are too high for downloading and stream-

ing. The WFS-approach of a 3D sound field uses more audio channels than the simple

stereo setup of the CD, making the problem even worse. Fortunately the data rate can

considerably be reduced without affecting the quality too much due to perceptual irrel-

evancies and statistical redundancies [4] of fully coded audio data.

One of the most well-known file standards for storing encoded audio is MP3. This is a

shorthand notation for MPEG1, layer 3. The MPEG4-standard is successor to this stan-

dard and contains multiple usable profiles with varying behavior [3]. At this moment

(2003) there is no profile for storing WFS data, but this is what the Carrouso project

aims at. Example profiles in MPEG4 are the LPC (Linear Prediction Codec)-profile for

encoding speech and the Main profile for the best possible reproduction of music. Note

that MPEG4 also contains profiles for playback of video.

The key point in WFS is that a sound field can be reproduced by convolving a dry sig-

nal with impulse responses. The dry signal is the original music or speech signal, while

the impulse responses characterize the room or space in which the origin must be re-

constructed. Changing the impulse response can lead to the perception of being in a

different room, standing on another spot in the room or hearing the source signal from

different angles. For proper playback in such a system with at least eight channels of

impulse responses are needed for varying acoustics the impulse responses have to be

switched at least every few seconds. This leads to large and demanding data streams.

Impulse responses can be compressed with larger compression ratios than audio data

(MP3 has a ratio around 12:1), although it requires different techniques. Sonke [1]

worked on this as part of his PhD. thesis, but was probably unaware of the advances

in audio coding (a lot of work in this area has been done in the last decade), and thus

choose a rather unusual approach. This research builds on his work and tries to im-

prove the compression of impulse responses using more advanced algorithms from the

audio coding world.

1.3 Research Goals

The goal of this research is to develop a coding structure which allows the compression

of impulse responses to a ratio much higher than current audio coders or the algorithm

by Sonke. The compression type is lossy, which means that the coded version of the
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impulse response will not contain all information of the original. The amount of re-

duction that can be reached depends on two principles. The first principle is based on

the characteristics of the human hearing system. A time-frequency analysis is done to

compare the impulse response to psychoacoustic masking properties of the human ear,

just as in audio coders. The second principle is that the characteristics of impulse re-

sponses are used to reach a meaningful reduction of data, by discriminating between

the various parts of an impulse response such as the direct sound, early reflections and

the reverberation. This reduction can done by carefully constructing a filterbank. The

proposed model will contain free parameters, such as the number of frequency bands,

the size of the windows and the quantization of the parameters which effect the quality

of the compression. The difference between the compressed and the original impulse

responses will be perceptually evaluated by use of listening tests.

The proposed model must be able to apply to a wide range of impulse responses (mea-

sured and artificially constructed) and must be practical in use. Therefore encoding

speed on modern computers must be of the order of magnitude of real-time and de-

coding must be even faster than real-time.

1.4 Thesis Outline

In this chapter an introduction to this thesis and its field is given as well as an outline

of the research goals. The second chapter explains the framework of this research, the

Wave Field Synthesis. A lot of information about WFS is already published by our group

at TU Delft; this chapter will provide more detail about the practical use of WFS leaving

the theory to others [20]. The third chapter contains a deeper look into the problem of

convolution and states some properties of typical impulse responses, since fast convo-

lution is essential for playback in a WFS-system and thus for the listening tests in which

the encoding model is tested. Also overlap-add and overlap-save are explained, provid-

ing a basis for the understanding of the use of lapped transforms, handled later in this

thesis.

The fourth chapter deals with audio coding basics. Instead of giving a complete overview

this chapter will only highlight some parts of current audio coders, particular those

parts used in the proposed model. This chapter is split into two parts: one part dis-

cusses the perceptual properties of the human ear, the other part deals with various

approaches to audio coding in a wide range of applications.

Chapter five deals with some advanced signal theory, mainly concerning various trans-
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forms, such as the MDCT and the use of multirate filterbanks. This chapter serves as a

building block for the proposed coder, the existing coders and signal theory.

Two methods of coding are investigated in this thesis. The method, described in chapter

six, originally researched by Sonke[1] and Hulsebos [7] was named parametrization of

impulse responses. In this thesis it is called subband coding; this name describes the

functionality better and avoids confusion, because parametrization of audio signals in

the time domain is historically called parametrization, while this coder splits the signal

in different frequency bands, analog to the subband coding of audio coders.

In the seventh chapter a new kind of coding is developed, based on block wise transfor-

mation of the impulse response, followed by spectral analysis of that block. The devel-

opment of this method is the research goal of this thesis.

Chapter eight contains the results obtained by using the proposed coder. Starting with

time/frequency plots of reconstructed impulse responses and a discussion of their con-

sequences. Then results of a listening test are given to investigate the quality of the re-

sults perceptually. The thesis ends with a discussion of the results, the conclusions and

recommendations for further research.

1.5 Thesis research

This thesis describes the development of an impulse response coder such that it can

be understood by someone who is not an expert in the field of audio coders or signal

analysis. For fluent reading it is not always emphasized where basic theory is explained

and where new design methods are given. Downside of this approach is that it can be

unclear what part of the research was already be done in the past and what part of the

research is done for this thesis. This section is added to make this more clear.

The Wave Field Synthesis theory described in chapter 2 is given as the context for an

impulse response coder and is not part of the research for this thesis. The research

started by examining the possibilities to improve the subband coder (chapter 6) from

Sonke. While some progress was made in this direction, also some boundaries of this

approach were encountered, leading to a literature study about audio coders and later

the transform coder.

It was also found that listening to impulse responses on an headphone was rather sub-

jective and the results had to be tested in a WFS setup to reach more objective results.

This started the part of research described in chapter 3. The first part, about the prop-
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erties of impulse responses, is well-known for a long time; the second part about parti-

tioned convolution however, contains newer insights. A program was written using the

partitioned convolution theorem for playback on a WFS system to be able to test the

developed impulse response coder in a full setup.

The basic principles of psycho-acoustic analysis for audio signals, as given in chapter

4, is a subset of a much wider theory. Discussion about this subject is still done, as can

be seen from the diversity of underlying principles in audio coders. The choice to give

exactly the information that is presented here, already points out in the direction of the

transform coder for impulse responses.

In chapter 5 and 7 it is easy to point out what is already known theory and what is new

material: chapter 5 contains only already known theory, chapter 8 uses and extends this

theory to develop a transform coder for impulse responses. The last two chapters of this

thesis, containing the results, listening tests and conclusions are, of course, all part of

research for this thesis.
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Chapter 2

Wave Field Synthesis

2.1 Introduction

To perfectly reconstruct a recorded three dimensional wave field is a goal which peo-

ple have tried to reach for a long period of history. Various approaches were used in this

context, all with their own shortcomings. Around 1930 the stereo technology was devel-

oped. Already then a schism started as an American and a British team researched the

possible way of recording with two microphones. The British team, led by Alan Blum-

lein was interested in playback of a recording in a domestic environment, while the

American team, researchers working at Bell labs, were interested in providing stereo to

large audiences for use in (film) theaters.

Today this difference can still be seen. The development built upon the ‘American’ re-

search has led to the current 3D-audio standard Dolby 5:1. This standard is supported

by a lot of consumer electronics devices. There are also other standards based on the

same principles: the audio is encoded in a number of channels, which are played back

at certain locations (front, back, bass). If, and only if, the listener is in a narrow listening

space (the ‘sweet spot’), he experiences the correct 3D sound field. The Dolby standard

also embraces compression of the audio channels, but other than that, still suffers from

the sweet spot problem. 1

Blumlein’s development has evolved to more advanced systems (more control allowed),

such as ambiophonics and ambisonics. These systems [9] use impulse responses of the

1The description here deals mainly with the playback part of 3D-audio. Recording the channels in a

proper way is quite complicated and a lot of advancement in this field is made during the years. This is

however beyond the scope of this thesis.

13
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recording room for more control of the reproduction of the sound field. They try how-

ever to reach this goal in a way which allows ‘semi’-traditional recordings. The Wave

Field Synthesis (WFS) as proposed by Berkhout [20] in 1988 is a theoretical generaliza-

tion of the wave field theory used by the ambiophonics system. Also Berkhout proposes

methods of extrapolation of sound field information which leads to better reproducibil-

ity. These formulas originated as a parallel from seismic exploration research where

complete models for the propagation of wave fields in the earth have been developed.

2.2 WFS Theory

The Huygens principle states that each point on a wave front can be regarded as the

center of a disturbance, which is the source of an elementary spherical wavefront. This

is demonstrated in figure 2.1 for a spherical wavefront. By substituting all disturbance

centers by a loudspeaker it is possible to use this array as a wave field generator.

Figure 2.1 Demonstration of the Huygens principle for a spherical wavefront.

In this section the basic principles of the WFS-theory are given. A more thorough and

fundamental treatment is given by Berkhout et al [20]. The Huygens principle is not

directly applicable for use with a discrete playback system, such as a loudspeaker ar-

ray. For the continuous case the Kirchhoff-Helmholtz integral states that an arbitrary

sound field can be generated with a distribution of monopole and dipole sources on

the surface of a closed volume�����������! �"$# %!%& �'����()�����+** �-,�.0/2143
5 67/86:945; �<�=��( ;?> � ����� ( �����* � .
/21@3
5 67/86:9A5; �?�B��( ;+C � (2.1)

As can been seen in figure 2.2,
; �D�E� ( ; is the distance between the listener point and the

surface � . ����� ( ����� is the sound pressure at the listener point in the frequency domain
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and F is the wave number �HGJI .

Figure 2.2 Geometry for the Kirchhoff-Helmholtz integral formulation. The wave field inside K
due to primary sources outside K is fully defined by the wave field on K .

If the surface � is chosen to be a continuous infinite plane separating the source from

the receiver area, the Kirchhoff-Helmholtz integral can be simplified and transformed

into the Rayleigh I integral:�����L�����! NMOIQP FR # % &TSVU ��������� . /2143
5 67/86:975; �?�B� ( ; C � (2.2)
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Figure 2.3 Rayleigh I: The pressure in a receiver point depends on a distribution of monopoles

on a plane surface.

Here S is the related normal velocity of each monopole as shown in figure 2.3 and
; �+���( ; is the distance from listener point W to a monopole source on the plane. Thus the

pressure ����������� can be synthesized by means of a monopole distribution on a plane. If

this is translated in practical sense, then we could physically synthesize the wave fronts
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at any listening point by re-radiating the sound velocity, recorded at a certain plane with

loudspeakers having monopole characteristics as shown in figure 2.4.

Figure 2.4 Schematic representation of a virtual source generated in front of a loudspeaker array

[25] .

Because a finite number of loudspeakers is used as secondary sources a discrete version

of the Rayleigh I integral should be used. Also using a linear array instead of a planar

array is much more feasible. The driving force of the speakers in such a system is given

by [20].

A practical problem is that of the spatial spacing of the loudspeakers. Aliasing will occur

for frequencies above X
nyq  IR0Y � (2.3)

It is possible to recreate sound fields [21] without spatial aliasing artifacts ifX
max Z IR0Y �\[4]_^a` max

(2.4)

where ` max indicates a maximum angle between the direction of the plane wave and

the loudspeaker array. In practice a loudspeaker spacing of bdc_� R0e m gives perceptually
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correct results for wavefronts up to �gf0h
b Hz [21]. Virtual sources in- and outside the

listener area can be reconstructed.

2.3 Practical implementation

As shown in the previous section it is possible to recreate a sound-field in the horizontal

plane using a linear array. Employing this technique in a WFS (Wave Field Synthesis)

system can be done in two ways. In the first approach during a recording session the

direct sound is recorded as well as the reverberation of the room on separated channels.

This can be done with spot microphones and a special room configuration. Another

way to make these recordings is by employing circular arrays [7]. During playback the

direct sound is reproduced as a point source and the reverberated sound field is given

by plane waves.

In the second approach only the direct sound is recorded during a session. The impulse

responses (acoustic environment) are measured separately for the different locations of

the source. During playback the direct sound is convolved with the impulse responses

and the result is reproduced by the loudspeaker array using plane waves. This approach

is used in this thesis.

The reproduction method of a WFS system is different compared to more conventional

methods. Advantages above more conventional methods include:i The dry recorded source signal can be reproduced in an arbitrary acoustic envi-

ronment with arbitrary listener and source positions.i Instead of the ’sweet spot’ of conventional audio playback there is a ’sweet area’

were a proper 2D sound field is constructed.i Synthetic acoustic environments (made with acoustic modeling software) can be

auralised rather precisely. (useful for testing future concert halls or simulators).

There also some problems attached with the implementation of a WFS system:i Relatively dry source signals are needed, so ideally the recordings of the source

are done in an anechoic chamber.i Large arrays of speakers are necessary for proper playback, which gives rise to

sight problems and is rather expensive.
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Figure 2.5 DSP, mixer and amplifiers, for the 160 speaker WFS system at the TU Delfti The location of the source over time must be known.i Convolution of all signals can be very processor intensive.

Most of these problems have practical solutions. The first problem can be circumvented

with the use of close miking, which results are good enough for WFS playback. The last

issue (convolution is computational intensive) can be solved by grouping sources. If, for

example an orchestra is recorded, it is not so important to properly place all individual

violin players. They can be grouped into fewer sources.

Instead of using speaker arrays with large numbers of speakers, research is done us-

ing distributed mode loudspeakers (DML’s) for playback, although a large number of

drivers remains necessary. Measuring the location of the source can of course be done

by using GPS-like systems, but also measuring with microphone arrays is being inves-

tigated [11].
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Figure 2.6 Speaker arrays for the TU Delft WFS system, set in: close up of the array.

2.4 Data and scaling

More channels give more data. This has consequences for storing and transmitting data

via a network, such as the internet. Separation of sound sources can help in this re-

spect. In conventional multichannel playback, the total amount of data is proportional

to the number of channels. Audio channels can be compressed independently with

conventional means, such as AAC (Advanced Audio Codec) compression, reducing the

bit rate to approximately 192 Kbps (Kilobit per second) per channel, thus transmitting

a 32 channel signal costs already 6144 Kbps. This is of course infeasible for current in-

ternet connections (approximately 33-2048 Kbps).

If a WFS-recording must be transmitted (or stored) this can be done by calculating the

different channels in advance, so a situation analog to the previous example arises. If

the WFS information is pre-calculated over 32 directions also 6144 Kbps is used. It is

possible to compress these pre-calculated channels due to inter-channel correlation. A

feasibility study for this has recently been done [25].
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A different approach is separating the dry sound and the impulse responses (acous-

tic environment) and store/transmit them independently. This gives a total different

scaling of the amount of data in a recording. In this situation the amount of data is

proportional to the number of sources. However, the impulse responses alone provide

still a rather large data stream: if 16 directions are used and the acoustic environment

is updated every second (which is proposed by the Carrouso project), and 96KHz - 20

bit audio is used, approximately 2900 Kbps is needed. The goal of this thesis project

is to compress the impulse response with a much higher factor (200x) than the current

audio coders do (10x).

If the goal is minimization of the amount of data a certain trade-off exists between the

number of sources, the number of playback channels and the chosen approach. More

playback channels increase the data rate for the pre-calculated channel approach and

more sources increase the data rate in the approach, were acoustics and sources are

transmitted separately.

Another obvious advantage of the separation of sources and acoustic environment is

that a recording scales naturally to an arbitrary number of playback channels (and thus

to different playback systems, from small to large arrays). To make this possible suffi-

cient information about the acoustic environment must be known, but, as stated above

the amount of data of the impulse responses can be significantly reduced with com-

pression.
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Impulse responses and convolution

3.1 Impulse Response

The ’acoustic environment’ is the set of impulse responses as used in a WFS system,

described in the previous chapter. In this section further specification of an impulse

response of a room is given.

The impulse response is literally the response of a system to an impulse. This impulse

can be defined as a Dirac pulse * , and the impulse response exposes how a system re-

acts to such an impulse. In the audio world an impulsive audio signal 1 can be used

to measure the response of a room. If this impulse response is processed, for example

for WFS playback, by convolving it with a dry signal, the impulse response is used as a

FIR (Finite Impulse Response) filter. This opposed to a IIR (Infinite Impulse Response)

which is a filter, requiring feedback. The IIR falls outside the scope of this project (see

[2] for more information), but it is important to know its existence.

As can be seen in figure 3.1 the impulse response consists of three parts: first the direct

sound, which is the impulse that is directly transferred to the listener; then the early

reflections, where the sound is reflected via wall, floor and ceiling; and finally the re-

verberation tail. The separation between the early reflections and the reverberation tail

is sometimes considered to be around 100 ms after the direct sound, but actually its

position depends on the (size of the) enclosure. The reflection density increases (the-

oretically) with the time squared, so in the reverberation part of the impulse response

1It is not possible to play a real Dirac pulse. Therefore other signals, which have a spread in energy, are

used to measure the impulse response such as noise-like signals or sweeps. The impulse response is then

de convolved from the response to such a signal [17]

21
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Figure 3.1 Theoretical and measured impulse response

this density is so high that it is usually regarded as having a statistical instead of a de-

terministic character. The pressure decay can be given as a function of the absorbing

surface W [13] by j�k
6ml ( ��no�p 

j�k
6ml ( ��bO�$qsrdtau0v0wyxz|{ (3.1)

with

j k
6ml ( the squared pressure, n the time, S the volume of the room,

j k
6ml ( ��bO� the start-

ing pressure. The early reflections can be calculated by the mirror image source model

or ray-tracing. These techniques provide the fundamental of various hybrid models for

more exact estimation of impulse responses. Nowadays multiple advanced software

packages exist trying to estimate the impulse response of a certain room or space [12].

The acoustic environment is defined by a set of impulse responses. Above the impulse
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response is regarded as the unique response on a certain location in a certain enclosure

as a result to an acoustic pulse given on a certain location. To record and use multi-trace

impulse responses is regarded as being subject to the WFS system.

3.2 Convolution in the frequency domain

Convolution is necessary for utilization of all finite impulse response (FIR) filter sys-

tems, which are used for auralisation, noise control, room equalization and all kind of

other digital filters. Very often one wants to reach real-time performance of this con-

volution when working with audio-acoustic variable systems. If the filter is rather long

(for example an impulse response of an audio signal at 96 kHz and 3 seconds long is

already 288 000 samples) traditional convolution in the time-domain (see equation 3.2)

demands an enormous number of multiplications.

By using the convolution theorem (3.3) this problem is overcome, but a new set of prob-

lems starts when using a block-based algorithm (here a Fourier Transform) with an in-

coming stream of data. The calculation must be done in blocks, which can be done

with the overlap-save algorithm [19] in which each block is shifted, doubled in length,

convolved and summed up. In partitioned convolution the same method is used, but

the impulse response is first divided in equally sized blocks. Each of these blocks is

convolved by a standard overlap-save process and later summed up. At first glance this

looks less efficient, because it requires more calculations, but the fundamental latency

(not the calculation latency) can be much lower, because one partition of the impulse

response is smaller than the total response.

3.3 Overlap-add and overlap-save

Convolution in the time-domain is given by} �y~4���Q���y~@�p �%/ � } ��n'��~4���L����no� C n (3.2)

For the frequency domain holds the convolution theorem:} �y~@���Q���y~4�! ���� X ������� X � (3.3)

The overlap-save methods for dealing with large datasets and continuous data-streams
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can be found in [1]. The input data is divided in finite blocks of L samples (equal to the

impulse response) and will be started with zeros. Only the first block is padded this way,

the others will be dealt with normally. After the convolution of a block, the end of the

data of this block will be polluted with wrap-around effects and thus be thrown away.

This method will cause a delay of L (the size of the impulse response). An example is

given in figure 3.2.

Figure 3.2 Example of an overlap-save process. Input signal ������� is split in three � -sized blocks.

Convolution is done between �2� and �L� . To construct the output signal �V�_��� , the extra�����
-part is discarded.

There is also another possibility to work with data in blocks, the overlap-add method.

Here each block is zero padded at both ends and then convolved. Then these pieces are

added, including the overlapping regions formed by the zero-padded parts. See also

figure 3.3. This process is also be useful in understanding the Lapped Transforms as
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given in chapter 5.

Figure 3.3 Example of an overlap-save process. Input signal ������� is split in three � -sized blocks.

Convolution is done between � � and � � . To construct the output signal �V�_��� , the extra�����
-parts are summed up.

3.4 Partitioning

In essence this variation of calculating convolution (originally proposed by Stockham

[23] in 1966) is partly done in the time domain and partly in the frequency domain.

The input impulse response ������� is initially partitioned in a reasonable number of �
equally sized blocks. Each block is then convolved as a separate impulse response with

an overlap-save process as explained above. The resulting sub-blocks are Fourier Trans-

formed and multiplied with a block of the input signal. At the end the sub-blocks are

delayed to their original position and summed. An overview of this process is given in

figure 3.4.

If the impulse response is broken up in a lot of small partitions, the speed of the Fourier
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Figure 3.4 Overview of partitioned convolution [23]. The input stream (showed at the top) is

broken into blocks and each block is Fourier transformed (FFT in the figure), con-

volved, inverse transformed an overlap-saved to the output signal (at the bottom).

transform counts less and less. A practical implementation [23] used with a Athlon 1

GHz processor, is known to give latency of 3 ms when used with 64 samples in 128

partitions or 12 ms if 32 partitions of 256 samples are used. Compared with the mea-

surements by Sonke ([1], 136), who finds a latency of 12.7 ms for 8192 samples on a

Motorola DSP, this is a satisfying result. Of course there are a lot of other considerations

like the latency of the used operating system (for example a low-latency patched Linux-

kernel, can achieve a low latency), type of memory (DDR RAM is best for real high speed

throughput), speed of data throughput, etc.

Because of the flexibility of a software solution, this opens the way to new and even

faster convolution algorithms, taking into account the possibilities of simplifications

that the properties of the human hearing system allow, as discussed in the next chapter

and implementation of a WFS system.
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Audio Coding Basics

4.1 Coding approaches

4.1.1 Lossless and Lossy

There are two main categories of audio encoders: lossless and lossy encoders. As

the name implies only lossless compression guarantees complete reconstruction of the

compressed signal. In lossy compression information is thrown away in order to get

better compression rates. Due to the use of psychoacoustic principles this reduction of

information doesn’t always lead to noticeable reduction of the sound quality.

4.1.2 Hybrid and parametric

There are various possible approaches when encoding audio lossy. In the ultra-low bit

rate regime, most encoders are parametric. The parametric coders try to fit a source

model to various objects in the stream. To successfully do this a certain amount of

knowledge of the model must be available. This is why most of the parametric encoders

are speech encoders. A more advanced class of encoders are the hybrid coders. They fill

the gap between the parametric and the waveform coders discussed later. The hybrid

coder works roughly the same as the parametric coder, but also sends some error infor-

mation along. When a waveform, encoded with an hybrid coder, is decoded, this error

information is used to deviate from the pure source model , thus giving some natural

quality. The CELP-coder, provided with MPEG2 is such a hybrid coder (see [3]).

27
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4.1.3 Waveform coders

Waveform coders can be divided into two categories: the coders trying to store the orig-

inal waveform of the signal in the time domain and the coders storing the spectrum of

the signal , the frequency domain coders.

Frequency domain coders form the majority of modern high quality encoders. They

provide a good quality at the cost of more complexity, because they make use of the

perceptual properties of the human ear. They also fall apart into two different groups

[10]: the subband coders and the transform coders. The first category employs band-

pass filters to split the input signal and then code the bands according to their percep-

tual relevance. The second category uses a fast transform to convert blocks of the input

signal in frequency components and handle the psycho-acoustic properties per block.

Most music compression coders (AAC, Ogg, DCC, AC-3, etc [4]) are transform coders.

The algorithm which Sonke developed [1] and which was called a parametrization of

impulse responses, actually falls in the subband coder category, since no source model

for impulse responses is used. The coder developed for this thesis comes close to the

working of the transform coders. Actually there is no formal definition for coding of

impulse response, since these coders have their own peculiarities, but in this thesis the

models employed will be called subband and transform coders. One property which

these coders share with some of the parametric coders is that Gaussian noise is used for

reconstruction of the impulse response.

4.2 Psychoacoustics

4.3 The human ear

The peripheral part of the human auditory system converts the oscillations of air par-

ticles into neural information suited for the brain. This pre-processing of the acoustic

signal performs already a frequency analysis. The structure of the ear can be divided in

the outer, middle and inner ear (see figure 4.1).

The outer ear consists of the pinna (auricle), the ear canal (external auditory meatus)

and the eardrum (tympanix membrane) [14]. The pinna collects the pressure waves

which are amplified and conveyed to the eardrum. The ear canal is a tube, enclosing an

air column, resonating at 3 kHz. The resonance increases the sound pressure level by a

factor 10. By vibrating the eardrum, the energy is converted to mechanical.
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The middle ear contains the hammer (malleus), anvil (incus) and stapes (stirrup). These

areas of the auditory system have various functions. Important for psychoacoustics is

that these areas protect against too large pressures and filter out low frequencies in

noisy environments. The inner ear contains the hearing organ, a bony cone-shaped

spiral called cochlea, which is filled with fluid. It converts the incoming mechanical en-

ergy to electrical impulses. This part of the ear plays the greatest role in the perception

of audio.

The basilar membrane in the cochlea reacts to the pressure changes on the location

where the sound wave stops. This location corresponds to a certain frequency. The

basilar membrane acts thus as a spectral analyzer, converting frequency information to

space information. The brain can however not separate two frequencies close to each

other, due to this property. Also other perceptual problems can be made clear with the

description of the ear, as described in the next sections.

Figure 4.1 Simplified structure of the human ear

4.3.1 Threshold of hearing

The absolute threshold of hearing is characterized by the amount of energy needed for

a pure tone such that it can be detected by a listener in a noiseless environment [4].
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Notice that this threshold is different for different people. However in the first half of the

20th century research was done to obtain a ’standard curve’ which is plotted in figure

4.2.

Figure 4.2 The Absolute Threshold of Hearing

An approximation of this threshold ��� in dB is given by���
� X �p �fOc�h��
X
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X
�)b0b0b �|¯ (4.1)

with

X
the frequency in Hz. In practice various different models for defining this thresh-

old are used [14] and defining an accurate hearing threshold is a challenging task for

modern audio coders. It is mentioned here for completeness, it is not important for

coding of impulse responses, due to the fact that the loudness of the input audio signal,

which is convolved with an impulse response is not known in advance.

4.3.2 Critical Bands

As explained in the previous section, the inner ear maps frequencies of a sound field

to a position on the basilar membrane. This aspect explains (part of) the non-uniform

frequency resolution of the auditory spectrum, since the lower frequency range has a

much finer spectral resolution than the higher range. This leads to the definition of crit-
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ical bands. Each point on the basilar membrane is tuned to a certain frequency called

the characteristic frequency: the place at which the traveling wave caused by a stimu-

lus reaches its maximum amplitude [10]. A bandpass filter, centered at a characteristic

frequency is defined as a critical band.

Figure 4.3 Example of a non-uniform filterbank, resembling the human ear

Moore [1] defines a critical band as an Effective Rectangular Band (ERB), which is the

bandwidth of an ideal bandpass filter, centered at any frequency. Critical bands are dis-

tinguished, using various different methods. Masking of noise, masking of tone, stimu-

lation with two tones, loudness of a changing frequency sinus are all properties which

are dependent of the critical bands.

Experiments have shown that the width of the critical band is narrower at low frequen-

cies. The non-linear scale on which the inner ear processes the signal is called the Bark

scale. This scale is defined, such that a certain distance on the basilar membrane corre-

sponds exactly with one Bark. A table of the Bark scale is given in appendix A. Zwicker’s

[14] formula to convert from frequency to Barks ( ° ) is:°�� X �� -�gfp±
²4³s´A±0^���bdcµb0b0b·¶
h X � ® fOc e ±
²@³s´A±0^�¸¹�
X
¶ e b0b � k7º (4.2)

An important issue is if critical band filters can be seen as discrete and slightly overlap-

ping (or non-overlapping) or continuous. Experiments tend to indicate that they are
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continuous [14], but in computational use it is easier to make them discrete. Mind fur-

ther the differences between the Moore and the Bark scale. They show overlap at high

frequencies, but are quite different at low frequencies. Both scales are an estimation

of the human auditory system at a certain input signal (for example masking of noise).

They do not represent the behavior of listening to complex and compiled signals.

4.3.3 Simultaneous Masking

When a peak renders another peak inaudible, this sound is said to be masking the other.

This can happen in the frequency as well as in the time domain. In the frequency do-

main, this property has a relationship with the critical bands. If two sounds both have

components in one critical band and if one is a certain amount louder than the other,

the quieter one will be imperceptible. This is called simultaneous masking , which con-

trasts with temporal masking, described in the next section. Physically this corresponds

with the hair cells in a particular location being overstimulated and therefore unable to

respond to lower magnitude vibrations.

Figure 4.4 Schematic Representation of Simultaneous Masking

As can be seen in figure 4.4 there are several masking effects which can be exploited in

an audio coder. In general a masking threshold is calculated, below which the informa-

tion is thrown away. The standard practice in perceptual coding involves first classifying

masking signals as either noise or tone masking, then calculating appropriate thresh-

olds to a level where the ’just noticeable difference’ (JND) lays. Then the NMR (noise to

mask ratio) and the SMR (signal to mask ratio) denote the logarithmic distances from

the minimum masking threshold to the masker and noise levels [27]. These thresholds

are finally used to determine a certain threshold for a block of data. The function of this
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threshold is stored along with the quantized residue.

4.3.4 Temporal Masking

As said earlier there is also masking in time. There are two possible forms of temporal

masking:i When a loud tone masks a quieter tone which comes after it; this is called for-

ward masking. Typical length of this effect is 50-200 ms. The amount of masking

depends on the loudness of the tone and on the frequency. The frequency depen-

dency is usually disregarded in audio coders, but the subband coder described in

chapter 6 uses this property.i A loud tone can also mask a quieter tone which comes before the louder one. This

is called backward masking. The length of this masking effect is typically 5 ms. In

audio coding this effect is usually disregarded.

Figure 4.5 Pre-echo: a) Original signal b) Reconstructed with pre-echo. In the reconstruction

there is noise before the peak, because of quantization.

Something related to temporal masking is the problem of pre-echo. Because most au-

dio coders work with blocks and a threshold, silence is not reconstructed properly. Pre-

echo’s usually occur when a transient, (or any signal with a sharp attack) is encountered.

The peak is encoded in as less bits as possible and therefore in decoding the peak, the

silence is ’amplified’ too much. One possible solution to this problem is the use of dif-

ferent window sizes, which is further researched in the next section. In figure 4.5 the

pre-echo problem is visualized.
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4.4 Quantization

If the spectrum of the input signal is known it still must be encoded in a proper number

of bits. This is called the quantization problem. In a transform coder, first the spectrum

is estimated, then the threshold is calculated using the absolute hearing threshold and

subtraction/addition of all masking parameters. The residue spectrum has to be en-

coded, which is usually done with vector encoding. The idea is that this transformed

vector is quantized with respect to the variance it has compared to the threshold func-

tion: this is the classical bit allocation problem. If an average rate of » bits per sample

is wanted, a total of �¼» bits is available for a � samples long block. Now if the samples

with index F have a geometric mean of½ k¾�¿ÁÀ , ¿ /oÂÃ3)Ä�¡ ½
k
3 > ©Å

(4.3)

with ½ 3 as variance to the threshold, then the log variance rule [19] minimizes the num-

ber of bits needed: Æ
3  �` ® �R?ÇÉÈ0Ê k ½ k3½ k¾�¿ (4.4)

Here ` is a Lagrange multiplier which depends on the bitrate wanted.

Æ
3 is the needed

number of bits to store sample F . The exact way to encode a residue in bits is not impor-

tant here. One should remember that the compression factor and thus certain encoding

decisions earlier in the process depends on this geometrical mean.
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Lapped Transforms

5.1 Introduction

In this chapter some theory of transforms and spectrum estimation is given. This is

done to examine which transforms can be used for an impulse response coder. As ex-

plained in the previous section one of the psycho-acoustic properties of the human ear

is masking in the frequency domain. To exploit this property in a coder, some calcula-

tions have to be done on the spectrum of the impulse response.

In the next section the definition of the spectrum for a random signal is discussed,

which is equal to the Fourier transform of the autocorrelation function. Since all trans-

forms operating on a basis of sinusoids can be used as a transform, various transforms

used in coders are examined. The Karhunen-Loeve Transform (KHT) is an excellent

candidate due to its energy compaction and de-correlation properties, but can not be

given for an unknown signal. One step further in the right direction is the Discrete Co-

sine Transform (DCT) which approximates the KHT. This transform is still not ideal due

to block edge effects.

To solve the block edge problem, lapped transforms were researched. The MDCT or

Modulated Lapped Transform seems to be a good candidate, due to its perfect recon-

struction ability. Starting from a transform based on blocks, the advantage of lapped

transforms is explained in section 5.4.

The chapter ends with some theory about windowing and filterbanks. Windowing of

a signal is necessary when using lapped transforms. Coding an impulse response also

employs a filterbank, so more information about the duality between windows and fil-

35
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ters is researched. Some codecs use a window switching scheme to ensure proper tran-

sient and spectral coding. How this switching works and how it can be combined with

the modulated lapped transform, is described in section 5.5.

5.2 Spectrum Estimation

To successfully code a signal ������� in the frequency domain, it is important to make an

estimate of the power spectrum ��Ë)Ë of this signal. The power spectrum is here defined

as the distribution of the energy of the signal in the frequency domain. For a stochas-

tic signal (such as a sampled impulse response), this spectrum is given by the Fourier

transform of its autocorrelation function »¨Ë)Ë [8]:�oË)ËV� . 1AÌ � ÀÎÍÐÏ »<Ë)ËV������Ñ? �ÒU Ä�/ � »<Ë)Ëd����� . /21�Ì U (5.1)

where the autocorrelation »+Ë)Ë is given by»<Ë)Ë ÀNÓ ¸ ����Ô��Õ����ÔÖ�B��� º (5.2)

Here Ó is the expectancy operator. The periodigram can be (and is classically) used

as a method for spectrum estimation. This is based on the Fourier spectrum of a sig-

nal, which is only given for a deterministic signal and not for a stochastic signal. The

periodigram of a block of samples is:��Ë)Ëd� . 1�Ì � À �� ; × � . 1AÌ � ;
k

(5.3)

The relation between the periodigram and the power spectrum is:�oË)ËV� . 1AÌ �p Ó ¸ ��Ë)ËV� . 1AÌ �
º

(5.4)

Here, � is the number of samples of a block over which the periodigram is taken.
×

is

the transformed signal 1. Hence, the power spectrum ��Ë)Ëd� . 1�Ì � defines the average fre-

1In this chapter the capital Ø describes the signal in the frequency domain, while Ù gives the signal in

the time domain.
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quency distribution of energy for a random function ������� . For spectrum estimation of a

non-deterministic signal, there is no universal technique. The periodigram can be used,

but is generally noisy and must be averaged over multiple blocks. Some approaches can

be found in [26], but here transform methods will be discussed.

The Discrete Fourier Transform (DFT) given by× �ÕF��� �� ¿ /oÂÒU Ä�¡ ������� . /212ÚÜÛ:ÝmÞÅ (5.5)

can be used for the transformation of such a block of size � . But if this is done on a

finite segment of a signal, then effectively the signal is windowed with a rectangular

window and the DFT will not be an estimate of
× � .)1AÌ � , but an estimate of

× � .s1�Ì � con-

volved with the frequency response of the window. A rectangular window has very nasty

side lobs, therefore in practice other windows can be used, such as Hanning, Hamming

and Kaiser (see also later in this chapter, for more information on windowing).

For computation of the periodigram the DFT is not the only candidate. Since the DFT

is actually a projection of the signal over a set of basis functions that are complex si-

nusoids, any transform whose basis functions are sinusoids should serve for spectrum

estimation. Furthermore the DFT is perhaps not a very effective candidate, because an� -length DFT delivers only �NG R frequency components. Other transforms give criti-

cal sampling , thus providing � frequency components over � samples transform (but

they will generally not give phase/magnitude information). Before such transforms are

investigated, some additional information about block transforms is given.

5.3 Block Transforms

5.3.1 Matrix definitions

If � is a certain block of � samples of an input signal, then the transform � of � ,
×

, is

computed by ×  N�aß�� (5.6)

The ß denotes transposing the matrix. The transform must be invertible ( � /oÂ exists) to
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make reconstruction of the signal possible, but orthogonality of the transform is pre-

ferred: � ß  Î� /oÂ (5.7)

Then the reconstruction x is �Ð Î� × (5.8)

and thus there is no need to calculate � /oÂ for reconstruction. Another advantage is

the conservation of energy (similar to the Parceval equations for the Fourier Transform)

when using an orthogonal transform. à × à  à � à (5.9)

where

à � à represents the Euclidean norm,à � à  ¿Ò3)Ä�Â ; � 3 ;
k

(5.10)

5.3.2 Discrete Fourier Transform

As seen in chapter 3, the convolution principle is not immediately shared by the DFT,

but by using overlap-add or overlap-save, this problem can be solved. (this can also be

seen as circular convolution). As coefficients in a block matrix the DFT is defined by

~ U 3  âá �� . 1 ­ Ú7ÝmÞÅ (5.11)

if ~ U 3 means the element of � in the � th row and F th column (thus F can be seen as

frequency component).
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5.3.3 Karhunen-Loeve Transform

Another block transform is the Karhunen-Loeve transform (KLT), which is also referred

to as the Hotelling transform. This transform is statistically seen an ideal transform.

The KLT is an unique orthogonal transform producing a set of uncorrelated coefficients

from a non-white signal.

If the covariance matrix »+Ë)Ë of an input block � with zero mean is»<Ë)Ë ÀãÓ ¸ ��� ß º (5.12)

then »<Ë)Ë is a symmetric and a Toeplitz Matrix (thus with eigenvectors of even or odd

symmetry). The covariance »+Ë)Ë of a transformed block
×

is»<Ë)Ë¨ Î� ßäDå »æË)ËJ� äDå (5.13)

Now the KLT transform is per definition the matrix � äDå that will diagonalize »?çQç in the

form »<çQç� N� ßäDå »æË)ËL� äDå  ãè8]�± Ê ÏLé ¡ � é Â �)cÉc é ¿ /oÂ Ñ (5.14)

The é ’s are the eigenvalues of the system. This is also known as the principal component

analysis [29] and it defines that the basis functions of the KLT are the eigenvectors of the

covariance matrix of the input signal.

Equation (5.14) implies that the elements of
×

are uncorrelated and that their variances

are given by ê ±
² Ï ¸ × º 3 Ñ À ½
k
3  é 3 (5.15)

By diagonalizing the covariance matrix of
×

the KLT results in maximizing the energy

compaction in
×

. This means that the energy is concentrated in only a few coefficients

(there will be few transform coefficients with large variances and most will have small

variances), which is an advantage if the goal is to give the spectrum of a block in as little

output coefficients as possible.
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However, the KLT is seldom used in audio coding, because it is signal dependent and

the precise model of the input is not known.

5.3.4 Discrete Cosine Transform

An asymptotic equivalence exists between the Discrete Cosine Transform and the Karhunen-

Loeve Transform [8]. Combined with critical sampling (M frequency components at M

input samples) this makes the DCT widespread in signal coding. The definition of the

DCT basis is ~ U 3  ãI
�ÕF��@á R� ³ È [ìëm��� ® �R � F #�îí (5.16)

where

I
�ÕF�� À ïðòñ Âó k if F = 0� otherwise
(5.17)

Besides being very energy compact, the DCT does not need overlap-add or overlap-

save for construction of large datasets and also does not need windowing for a smooth

spectrum estimate. It has critical sampling and thus delivers � frequency components

for � input samples.

This transform still suffers from the so-called block edge effects. These discontinuities

in the reconstructed signal arise when the frequency component of the input blocks

are independently processed. Putting them together on reconstruction gives artifacts

as the different processing of the blocks can be heard.

5.4 Lapped transforms

5.4.1 Lapped Orthogonal Transform

To find a solution to the block edge effects, lapped transforms were developed. Other

possible approaches are pre- and post-filtering and the short-space Fourier Transform

(SSFT) [3], but these techniques give a low-pass effect around the block boundaries

or in the case of the SSFT ringing around the edges. The recognition that the blocking
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effects are caused by the discontinuities on the basis functions of the transforms was the

key to the development of the Lapped Orthogonal Transform (LOT). The basis functions

of the transform must be made longer than the transform length for a lapped transform

(see 5.1).

Figure 5.1 Signal processing with a lapped transform with 50% overlap

If a transform has the same functions for direct and inverse form, it must be orthogonal.

Keeping this orthogonality at a longer basis imposes extra restrictions due to the extra

degrees of freedom.

If � now has
R � samples, and � is the � by

R � transform matrix, then×  ã�?ß�� (5.18)

with: �Ð ô¸ ����ÔE��� R � ® �J�õ����ÔE��� R � ® R � cÉcÉcö����ÔE�÷���J������ÔE�ô� º ß (5.19)
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with Ô the block index. Thus the signal � is given in overlapping blocks as shown in

figure 5.1. For reconstruction of a block� ß �¼ ãø and � ß�ù �¼ ãb (5.20)

with ù À , b øb b > (5.21)

This is a very generalized description, a block transform can also be given in this way

with � ß  ô¸ b � ß b º .
5.4.2 Perfect Reconstruction

Now extra perfect reconstruction restrictions are applied, to cancel aliasing in the time

domain. Perfect reconstruction means that the transform of the spectral decompo-

sition must be invertible. This is a non-trivial problem. If one block of the signal is

transformed with the DFT and then converted back with the IDFT there is perfect re-

construction, but if we use a filterbank× 3 ��Ô��� �ÒU Ä�/ � �������Ü� 3 ��ÔE�÷�B��� (5.22)

where � 3 ����� is the F th analysis filter (FIR), then the DFT does not possess perfect re-

construction. When coding a signal using a filterbank for transformation and analysis

is standard practice. The reconstructed signal can be written asú�������� ¿ /oÂÒ3)Ä�¡ �ÒlQÄ�/ � ú× 3 ��Ô��
X
3 ���û�=ÔE�ô� (5.23)

where

X
3 is the F th synthesis filter, which is needed to transform the coefficients back

to the time domain (which is usually called the synthesis bank). If equation 5.22 is sub-

stituted in 5.23
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ú�������p �Òü Ä�/ � ����ý:�Ü� ß ���p�AýÕ� (5.24)

is obtained, with the time varying impulse response given by� ß ���p�Aý:� À ¿ /oÂÒ3)Ä�¡ �ÒlQÄ�/ �
X
3 ���û�BÔE�ô�Ü� 3 ��ÔE���Bý:� (5.25)

Then � ß ���p�Aý:�p * ���E�Bý��Bþÿ� (5.26)

with þ optional delay between � and

X
. The ý which was silently introduced is the index

of ������� and 	 is total length of ������� . Actually only transforms where 	  R � (which

means that the basis of the transform is doubled) are treated here, but the given defini-

tions hold for the general case.

A filterbank pair ������� and

X ����� must satisfy condition 5.26 to obtain perfect reconstruc-

tion. It took over a decade to find such a solution as described in the next section. Here

we show that there is no feasible FIR-filter bank solution for the DFT. In the DFT filter-

bank we need modulation to shift the center frequency to the origin, before applying

filter ������� . After interpolation the filter

X ����� is used, so× ¿ /�3 ��Ô��� × �3 ��Ô�� (5.27)

[8] shows that such a filter can have perfect reconstruction ifX ������ ��������p � �
� ]�� b������ �÷���bd� È ´	�Vq)²�
\]_[�q (5.28)

If � � R
then all possible FIR solutions for ������� and

X ����� have polyphase components

order zero [28], which means that ������� has length � and

X ����� is its reverse. Using the

reverse of a proper window leads to bad low-pass behavior and therefore a practical

solution does not exists.
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Note that this doesn’t mean there are no good filterbanks possible with the DFT, just that

there can not be perfect reconstruction if a filterbank is used in conjunction with the

DFT. If 	
���Î� the aliasing is very small and QMF-filters can also lead to good results.

However, considering all other good properties of LOT and perfect reconstruction, this

falls outside the scope of this thesis.

5.4.3 Modulated Lapped Transform

When 	â R � filterbanks based on Perfect Reconstruction principles have Time Do-

main Aliasing Cancellation (TDAC). To obtain the proper filterbank and transform to-

gether, equations 5.21 and 5.26 have to be satisfied. TDAC compensates for the folded

frequencies above the Nyquist frequency, by overlap-adding them in subsequent blocks.

The basis functions of a modulated lapped transform and the corresponding filterbank

are given by j
U 3  

X
3 ������ ��������·³ È [ ë �ÕF ® �R �4��� ® 	=� �R � #� ®�� 3 í (5.29)

for F  îbd�g�
�)cÉc�� ��� and �� bd�g�
�)cÉcµ	���� . Assuming that 	  �� � the phases � 3 are

restricted by

� 3  -�ÕF ® �R �4��� ® �J� # R (5.30)

Now the MLT (or as it is also called the Modified Discrete Cosine Transform) can be

written as j
U 3  ��������@á R�  �³ È [ ë ��� ® � ® �R �4�ÕF ® �R � #� í (5.31)

where � k¿ was introduced for normalization. For perfect reconstruction ������� must

fulfill � k ����� ® �
k ��� ® �ô�p ô�����	 � �a�B���� �������� (5.32)
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Some examples of windows which satisfy these conditions can be found in the next

section. If we give the MDCT as a function on the input signal it can be defined as× ��Ô��p 
� /oÂÒ3)Ä�¡ ���ÕF��Ü���ÕF��·³ È [
� #R � � R F ® � ® � R �4� R Ô ® �J��� ÔÖ ãbd�)�)�)��� � R ��� (5.33)

The inverse transformation is also needed and is

�o� j �� "� ��� j ��� ­ /oÂÒlQÄ�¡ × ��Ô��·³ È [L� #R � � R F ® � ® � R �4� R Ô ® �J��� Ô  ãbd�)�)�)���	� � � (5.34)

In appendix B it is shown how the MDCT can easily be calculated from the DFT, and

thus is fast and easy to calculate.

5.5 Windowing

In the previous section it was shown that lapped transforms are applied to an input

signal in blocks. The length of these blocks is an important issue, because the duality

between the time- and frequency domain gives you preciseness in only one domain,

depending on these block length. In other words, a long block provides a detailed fre-

quency resolution of a signal, while a short block gives a more detailed time resolution.

For a smooth overlapping of the blocks the 2:1 decimation was canceled in the inverse

transformation if the window used, fulfilled the restrictions given by equation 5.32. A

popular window, which satisfies these conditions is the half sine window, displayed in

5.5 and defined by �������! ã[A]_^�¸ # �� º � �ÿ ãb��)�)���î� � (5.35)

where � is the size (in samples) of the window. The technique of switching windows

as used in the AAC [3] according to the characteristics of the input block can be used to

improve the quality of an encoder. As mentioned earlier, another method to improve

the quality of a coder, especially for encoding transients, is to adopt the window size
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Figure 5.2 Half Sine Window for Overlap Add Sequence

switching. It is important to conserve the ability of perfect reconstruction. The filter-

bank which is formed using such a method is called a multirate filterbank. The method

the AAC uses to switch to shorter windows is plotted in figure 5.5.
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Figure 5.3 Comparison for Window Overlap Add for Steady State and Transients

When a transient is detected a switch to a short window occurs (windows nr. 2-9 in

figure 5.5). Window number 1 and 10 are special windows, the so-called start and stop

windows. The short windows come in groups of eight, because the total length of the

short windows then overlaps with the large windows. This helps the alignment of the

blocks if multiple channels are used, but this is not a requirement.
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To maintain perfect reconstruction the start window is defined by

��(���� 6 �� ï�����ð �����ñ
� ü�� U � �����A� b!����� �÷����
� � �����Î� ® ¿ « � �� (#" � 6 � ���ÿ�=�ô�A�ö� ® ¿ « � ��� � ®

k ¿ « ���bd� � ®
k ¿ « ���$� R ����� (5.36)

The complete short window is defined by equation 5.35 for the number of samples of

the next window, the long window by the number of samples of the previous window.

The stop window has a similar definition (but mirrored). The example in 5.5 illustrates

that for a long window of 2048 and a small window of 256 samples.
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Chapter 6

Subband Coding

6.1 Properties

At the TU Delft, Sonke [1] has developed a compression method for an impulse re-

sponse. Hulsebos [7] has further evaluated this method. This method is based on

equations derived from Patterson, Plack & Moore [7]. According to them the amplitude

spectrum of the auditory filters can be modeled byW � X � X&% �p ô��� ® " ; X � X % ;ù � X % � �$qsrdt z(' § u § w ')+* § w-, (6.1)

In this equation

X %
is the center frequency, ù � X % � denotes the equivalent rectangular

bandwidth. ù � X % �p �hOc R fì�$�)b /�¥
X k%
®/. fOc " �$�)b /�«

X %
® R10 c e (6.2)

The temporal masking of the human ear is also taken in account. In this approach

no discrimination is made between post en pre-masking. Meanwhile the frequency

dependent behavior of the temporal masking is taken in account (see table 6.1).

6.2 Band Filters

In the coding process the impulse response is first split into frequency bands. This fil-

terbank is constructed so that the sum is always unity (for keeping the gain constant))

49
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(Hz) ~ (ms)� 200 35

300 13

900 92
2700 8

Table 6.1 Time Integration Lengths of the Human Auditory System

and the bandwidth matches equations 6.1 and 6.2.

This filterbank is given byW � X � X 
Õ�p ��432��� Ï Ç_È0Ê �45 �76 5
k � " 3OI ® R 3

X
5 � 6 5

k � " 3OI ® R 3
X 
 ��� Ç_È0Ê �85 ® 6 5

k � " 3OI ® R 3
X

5 ® 6 5
k � " 3OI ® R 3

X 
 ��Ñ (6.3)

where ’hann’ represents a unit width Hanning window, 3E âhOc R f �O�)b /�¥ , 5  . fOc " �d�)b /�«and I  R10 c e . In figure 6.1 some of these scaled Hanning windows are given and they

are compared to the original Patterson windows (given by equation 6.1).

Figure 6.1 Patterson versus scaled Hanning Windows

6.3 The parametrization process

As figured in 6.2, the compression process consists of several phases. The first step is

to use the filterbank of scaled Hanning windows and to convert the IR to the frequency

domain. For the full audio spectrum, 38 bands are used. Then the signal is Hilbert
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transformed and the result is integrated over time using the values of table 6.1. The

result can then be down-sampled to about 50 samples in the low frequency bands until

200 samples in the upper frequency bands. Only perceptual relevant data is obtained

this way, according to the temporal masking principle.

Input Impulse Response

Filterbank time-> 
38 frequency bands

Scaled Hanning
Windows

Integrate over timeTime Integration
Lengths

Hilbert transform

Resample in 50-200 samples

Parameters

Figure 6.2 Overview of the subband coding method

6.4 The reconstruction process

The parameters generated by the process described in the previous section are related

in the spectral and temporal properties (see also [1]). Modifying the spectral properties

of a certain signal effects the temporal properties and vice versa. This mutual depen-

dency can be quantified with a number of properties of the Fourier transform. One of

this properties is the modulation property:3o�ÕF���� 5 �ÕF��:9; W �y����� Æ �y��� (6.4)

with 3o�ÕF�� and 5 �ÕF�� two arbitrary time domain signals and W �y��� and

Æ �y��� their Fourier

transforms respectively.

Proper reconstruction can be done by using white noise, with a dense and irregular
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structure in both time and frequency domain. Because of the variations in the gener-

ated noise, the parameters of the noise signals must also be accounted for. An overview

of the process can be seen in figure 6.3.

Input Inpulse ResponseWhite Noise

IR parametersNoise parameters

Divide IR/Noise paramFilterbank time-> 
38 frequency bands

Scaled Hanning
Windows

Multiply

Reconstucted Impulse Response

Figure 6.3 Reconstruction process of the subband coder

If ��� X 
 ��~@� are the parameters for the impulse response and ��� X 
 ��~@� the parameters for

the noise, the reconstruction process can also be given byj �y~4�p Ò 
 ��� X 
Ü��~4���� X 
 ��~ �g�!�
X 
Ü��~@� (6.5)

where

j �y~4� is the reconstructed impulse response, �!� X 
:��~4� is the band filtered noise sig-

nal, for which the same filterbank must be used as for the construction of the original

impulse response. Naturally, using this method just returns an approximation of the

original impulse response.
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Transform coding

7.1 Overview

In this chapter the transform coding approach of compressing an impulse response is

described. Further it contains some specific methods, using the knowledge of impulse

responses as described in section 3.1.

Split IR in 
short blocks

MDCT
per block 

Input Impulse Response

Calculate
Barkscale

Detect
peaks

Split IR in
long blocks

MDCT
per block

Calculate Time
Filter bank

Calculate mean
energy per 
time/bark

Output
coefficients

Figure 7.1 Overview of the transform coder

In figure 7.1 and 7.2 an overview of the transform coder is given. The next section, about

53
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window switching, will give more details, starting with the explanation of ’Detect Peaks’

and ’Calculate Filterbank’. Section 7.5 contains further detail about the reconstruction

process.

White Noise

Reconstucted 
Impulse Response

Output
coefficients

Peak 
information

Calculate Time
Filter bank

Short block
coefficients

IMDCT

IMDCT

Long block
coefficients

Calculate
Barkscale

Reconstruct
block

Noise 
in blocks

Figure 7.2 Reconstruction process of the transform coder

7.2 Window switching

It has been shown that the size of the windows used to approximate the spectral compo-

nents of an audio signal lead to an accurate description of the signal in either the time

or the frequency domain. Changing the size of a window with a certain switching tech-

nique can therefore be very useful when coding impulse responses. If the direct sound

peak of a reconstructed impulse response is not a near exact copy of the original, this

will be easily distinguishable. The subband coding method described in the previous

chapter failed to accurately do this and therefore the original direct sound was send

to the coding engine as extra data. But a precise reproduction of the early reflections

without too much exposing to this problem, was found to be important either.

The window switching scheme of the AAC-coder was an interesting candidate for our

coding engine. First the MPEG2-spec [3] was exactly followed and thus the switching

consisted of a start window of 2048 samples (46 ms), followed by 8 windows of 256 sam-
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ples (6 ms), followed by a stop window to switch to long windows again as shown in

figure 5.5. To do this a criterion is needed which states at what exact position in time a

switch in window-length should occur.

The traditional approach of audio coders is to compare the coding gain against the per-

ceptual entropy for a block and transform this block with the window size which max-

imizes this coding gain. This coding gain can be calculated with equation 4.4. When

coding an impulse response this approach is not optimal, since it is more important to

provide a proper overlapping of the short windows with early reflections, than to obtain

the best possible bit rate.

Some speech coders [4] use a more loose method for detecting peaks. In chapter 4 it was

shown that forward temporal masking is a longer lasting effect than backward masking

and therefore it is preferred to focus on the rising of the signal, instead of the falling.

This effect can be used as follows: in the time domain a local estimate is made of the

change in signal energy, by splitting the input in blocks of � samples and calculating

the energy of the samples in each interval. The total summed energy . 1 in block P is

then compared to the energy in the consecutive block:�ì . 1=<�Â � . 1. 1 (7.1)

If � is higher than a certain threshold value, a transition to shorter windows will occur.

After one or more short windows, a longer window is used again. If . 1 is lower than a

factor F of the maximum . 1 the transition will be suppressed to prevent smaller, less

important peaks to be coded in a small window. Another practical condition which can

be used is that a switch should only occur in the first � milliseconds of the impulse

response. At ~>� � there is only reverb and no direct reflections, so switching to smaller

windows and thus more data wastes bandwidth.

Typical values that can be used are�ì ãbdc R �	�� �f R �@F  ãbdc R �m�� R b0b@?'[ (7.2)

This method causes an encoding in a variable bit-rate, since it is not known in advance

how many short windows are going to be used. Choosing a value of the parameters in

7.2 suited for different types of inputs is difficult; the number of windows depends a

lot on the level of reverb in the impulse response. Therefore another method was also
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tried. The number of early reflections can be estimated in advance with some extra

knowledge of the acoustics of the room where the impulse responses are recorded. A

fixed number is chosen (for example 16) based on this knowledge and then this number

of the highest peaks in the impulse response are mapped with a short window.

Disadvantage of this last method is that the number of reflections can not be found

automatically. Therefore the two last methods were tested, namely the approach with

fixed number of reflections and the approach defined by equation 7.1 and 7.2.

7.3 Window design

Since the Modulated Lapped Transform is the transform used, the perfect reconstruc-

tion conditions (equation 5.36) must be fulfilled. A proper window must still be chosen.

The � samples long half-sine window as given by� "BA �����p ã[4]_^ ë #� ��� ® �R � í (7.3)

is the unique window which also satisfies polyphase normalization [8]. This window is

certainly a candidate. AAC also uses the Kaiser Bessel Derived window given by� 3DCFE �����p G U
 Ä�¡IH ��Jm�G � /oÂ
 Ä�¡ H ��Jm� (7.4)

with H ��Jm� as the Kaiser Bessel kernel window function defined as follows

H ��Jm�! ø ¡+K # �����D� � 
 / �ML ¯��L ¯ �
k �ONø ¡ � # �o� (7.5)

where ø ¡ is the modified zero order Bessel function of the first kind and � is the param-

eter of the window. The use of different windows has consequences for the frequency

separation of the algorithm.

Figure 7.3 and 7.4 show the frequency responses of both windows. According to [14]

from the point of view of transform coding and compression efficiency in particular

two specific properties of the transform window are extremely important:
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Figure 7.3 Frequency selectivity of the half-sine Windowi Monotony: the envelope of the stop-band attenuation must be monotonically

decreasing or equiripple since it is desirable to confine the spreading of the fre-

quency quantization errors. In other words it is desirable to achieve an accurate

coloration of the quantization noise.i Selectivity: the main lobes (pass-band) of the frequency response must be as nar-

row as possible and the stop-band leakage must be minimized

The half-sine window is a reasonable window, with respect to monotony, but the KBD

window has better selectivity properties, although the main lob is a bit wide, the ulti-

mate frequency rejection is better. Window design is a rather advanced topic; here just

the equation of the used window is given, without an explanation of all the problems at-

tached to the design of a window. To avoid switching between different window shapes,
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Figure 7.4 Frequency selectivity of the Kaiser Bessel Derived window with P = 6

the Ogg Vorbis coder [32] uses only one window, here called the ’designed’ window,

which is given by

�������p �[A]_^�Q �R # [A]_^ � � ® �R  
k=R

(7.6)

This window can be used in the MDCT because it satisfies the perfect reconstruction

condition. Further the frequency response as shown in figure 7.5 combines some fea-

tures of both the half-sine window and the Kaiser Bessel Derived window, thus making

it the preferred candidate for this coder.
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Figure 7.5 Frequency selectivity of the designed window

7.4 Bark filterbank

In chapter 4 the Bark scale was introduced as a scale which approximated the critical

bands of the human hearing system. Most audio coders use the Bark scale to employ

the masking properties of the human ear in bands. Zwicker’s formula for conversion of

a frequency scale to a Bark scale is:

°�� X �� -�gfp±
²4³s´A±0^���bdcµb0b0b·¶
h X � ® fOc e ±
²@³s´A±0^�¸¹�
X
¶ e b0b � k º (7.7)

But also other conversions exist. Traunmüller proposes:



60 Chapter 7: Transform coding

°�� X �� R hOc 0 � X� . h
b ®
X ��bdc e f (7.8)

Traunmüller also proposes a different low and high frequency approximation, to obtain

a curve which is in good agreement with measured statistical data.

Figure 7.6 Plot of bark-transformed frequency against frequency in Hertz

There is no unique way to develop a filterbank from the Bark scale. If the Bark table is

used to form rectangular block filters this will give sharp edges to the frequency band

transitions. In the previous chapter the parameters derived from the impulse response

were smoothed with a window in the time domain and the frequency domain.

Audio coders generally store all spectral components as a masking threshold function

together with a residue per sample encoded in as less bits as possible. The audio ar-

tifacts are often a result of the quantization of the residues. In our impulse response

coder a much better compression ratio is possible if only one output coefficient per

band is saved, analog to what the subband coder in the previous chapter does in the

time domain. Therefore a filterbank which approximates the critical band in the hu-

man hearing system was sought.
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The curve of the Bark critical bands is not known and depends on the sort of masking

effect. In audio coders it is often assumed that the windows are triangular with respect

to a masked tone, however this is done to keep the computational complexity low. In

figure 7.7 a filterbank is shown based on cosines windows, which was one of the pro-

posed filterbanks for our coder. The output coefficients were derived by multiplication

per window in the frequency domain and summed to obtain one parameter per band.
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Figure 7.7 Possible Bark filterbank with cosines shaped windows over 4096 samples

As explained before the transform coder described here, uses blocks of different sizes

in the time domain to account for the pre-echo effect. If a small frame (containing a

low number of samples) is used for transformation, it is very difficult to approximate

a proper Bark filterbank for that block. In other words, calculating a filter over a very

small number of samples leads to a distorted filterbank. The inaccuracy in the approx-

imation of the window can be compensated for if the original signal is reconstructed

with white noise, just as in the subband coding method by dividing the parameters by

the output coefficients of the noise. However the small number of noise samples in the

low frequencies still give a high uncertainty factor. Further the bands are not recon-

structed as intended. For this reason the MDCT-coefficients are not divided in bands,

but simply store all.

7.5 Spectral coding

Spectral coding of the Bark components with one parameter per Bark is also possible

without the use of a filterbank in the frequency domain. In this section a hybrid method
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for this reconstruction is proposed.

In the subband coding method of the previous chapter, the impulse response was con-

structed as a shaped noise signal. Here a similar approach is used. The coefficient in

a certain band is just the summation of all energies of the samples in that particular

band. The boundaries of these bands as well as the center frequencies can be found

in appendix A. This can be seen as the problematic block band filter, however, since

the reconstruction will make no use of filterbanks, the edges of the bands will not give

problems.

First step in the reconstruction is to approximate a marginal spectrum. This is done

by looking at the parameters as representing the center frequency of their Bark band.

The center frequencies of the bands are given in the Bark table of appendix A. The

position of these center frequencies are scaled on the � samples of a block. The process

is outlined in figure 7.5. The first graph shows the original spectrum. In the second

graph the summation of energies of the samples per Bark band are plotted as a function

of the band.

In the third graph the parameters are plotted, scaled to the sample corresponding to

the center frequency of the band. Then over these � samples a linear interpolation is

carried out which results in a marginal spectrum. This linear interpolation can be seen

in the same graph by the lines connecting the parameters.

At this point the spectrum of a white noise signal is calculated over the same amount

of samples. The noise signal has by definition a flat spectrum; in the fourth graph of

7.5 an example is plotted logarithmically. Finally the reconstructed shaped noise spec-

trum is the multiplication of the noise spectrum with the interpolated Bark parameters.

This MDCT spectrum can then be converted back to the time domain with the same

filterbank as was used for the initial transform.

Compensation of the parameters for the noise, as in the subband coder, is not necessary

because there is no erroneous quantization of the window. And unlike a transform with

the DFT, with the MDCT the variance ½ of a white noise signal is the same in the time-

and frequency domain.

To obtain the reconstructed signal in the time domain, the windows have to be over-

lapped as stated in the section about windowing. The Matlab code which calculates the

proper window sizes given the positions in time of the early reflection can be found in

Appendix C.
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Figure 7.8 Process of Bark reconstruction

7.6 Compression Ratio

By looking at the transform coding proposal for compressing impulse responses it is

clear that there are some degrees of freedom which determine the real compression

ratio. Important parameters in this are the size of the large windows (the windows over-

lapping the reverberation tail and the parts between the early reflection) and the short

windows, overlapping the direct sound and early reflections. Other free parameters in-

clude the number of early reflections/short windows taken into account and the quan-

tization of the output coefficients.
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The storing precision by which the output coefficients are stored determines a large

part of the final compression ratio. Quantization with 4 bits, will provide
R ¯  -�gh differ-

ent values for the coefficients, which is probably enough already. The linearizion and

multiplication with noise helps to avoid the usual quantization errors/problems.

Besides storing the Bark band parameters, also a mechanism for storing the window

sizes in time is necessary for a reconstructible encoding. Here is chosen to save the

location in samples of the early reflections and direct sound (and thus of the small win-

dows) and recalculating the filterbank with the same algorithm as during the compres-

sion (appendix C). The amount of data this delivers can be neglected in comparison

with the amount of data of the output coefficients.

The algorithm does not scale with higher sample rates or higher bit rates of the input

signal. In other words, compressing a 44 KHz/16 bits input signal provides the same

number of output coefficients as compressing a 192 KHz/ 24 bits signal, but the com-

pression ratio of the latter will be much higher.
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Results

8.1 Comparison of the algorithms

In this section the subband- and of the transform impulse response coder are compared

and the differences in the obtained results discussed. Since the goal of this thesis is to

develop the transform coder, the subband coder will only receive some attention here.

The original impulse response shown in figures 8.1 and 8.2 is recorded in the Amster-

dam ’Concertgebouw’ and is indicated in this chapter as a ’much reverb’ environment,

since it is recorded relatively far from the stage, leading to a long diffuse tail.
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Figure 8.1 Time domain representation of the original and reconstructed Impulse response us-

ing the subband coder
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Subband coder Transform coder

Number of frequency bands 38 26

Smallest time window 352 128

Longest time window 1543 2048

Percentage short windows 63% 12.5 %

Total number of parameters 9310 3488

Table 8.1 Comparison of the number of parameters used in the subband and transform coder

for an impulse response of 131072 samples

The compression ratio is not only different for both encoders, it also depends on some

initial parameters as described in section 7.6. In table 8.1 some typical parameters are

given for compression of the ’much reverb’ impulse response from figures 8.1 and 8.2.

The subband coder employs various time window lengths depending on the frequency

band, as given in table 6.1. In the transform coder the impulse response is first trans-

formed to the frequency domain and the small windows are placed on a fixed number

of peaks, as explained in the previous chapter. For the transform coder the windows

overlap each other, thus delivering twice as much parameters per block.
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Figure 8.2 Time domain representation of the original and reconstructed Impulse response us-

ing the transform coder

It is clear from table 8.1 that the transform coder uses less output coefficients to store

the compressed impulse response and thus reaches a higher compression ratio. More

so the parameters in this method can be quantized, giving even higher compression

factors (see 4.4). The parameters resulting from the subband coder may also be quan-
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tized, but this is more difficult because the quantization should be carried out in the

time domain instead of the frequency domain. Also the computational complexity of

the transform coder is lower. It is expected that the general calculation time of the sub-

band coder is in the order of five times slower (most code was not optimized and written

in Matlab).
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Figure 8.3 Spectrum of the original and reconstructed Impulse response using the subband

coder

The quality of the reconstruction differs. In figure 8.1 and 8.2 the reconstructed version

of an encoded impulse response using the subband respectively the transform coder

are shown. The absence of peaks in the subband encoded impulse response is strik-

ing: the direct sound does not exist in the reconstruction. Hulsebos [7] assumes that

the parametrization with the subband coder should include the non-encoded direct

sound information and only the reverberation tail must be encoded. The early reflec-
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tion part of the impulse response is not mentioned. The impulse response shown in the

figures is measured at a certain angle (the listener does not look to the source position)

and therefore the largest peak arrives at the listener around sample 1000 (which corre-

sponds with 22 ms). Other peaks also disappear in the subband coder. The transform

coder does not have this problem. In fact the number of peaks that must be kept intact

is an initial parameter; in this example 8 peaks were kept.
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Figure 8.4 Spectrum of the original and reconstructed Impulse response using the transform

coder

One can also compare the periodigram of the reconstructed impulse responses. The

periodigrams of the ’Concertgebouw’ impulse response measurements are plotted in

figures 8.3 and 8.4 and show the change in the (normalized) spectrum over time. To

calculate this spectrum over time the signal is windowed with Hanning windows and

Fourier transformed over 256 samples.
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Here the subband coder seems to reach a more precise result than the transform coder.

Especially in the high frequency area the reconstruction seems better. This is not really

surprising as this coder uses 38 bands, while the transform coder uses 26 bands. The

sharp attack problem of the subband coder can also be seen in the frequency spectrum.

The transform coder shows the sharp attack properly but has an flat spectrum before

the attack. The amplitude of this part is low, but the spectrum and size betray an arti-

fact of one (half) large window with leaked white noise, due to the quantization error. It

is not possible to estimate the impact of such artifacts without listening to the results.

These plots help in explaining some of the expressions behind and design choices in

different coders, but are not of much use without listening to the results. A presump-

tion in these coders is that the spectrum does not have to be known precisely, but only

in critical bands. The size of a certain band and the spread in frequency attached to

this can not be evaluated with a plot. However the shaped noise idea can clearly be

seen in both coding methods. The differences of the periodigram of a reconstruction

and the original signal is relatively large, but the differences between the shaped noise

reconstruction small.

8.2 Transform coding filterbank

In this section only the transform coder is considered. One of the features of this coder

is the window switching scheme. As stated in the previous chapter various approaches

were tried for matching the filterbank with the impulse response peaks. In figure 8.5

the fixed number approach is shown. It can be seen that the small (Ogg-)windows are

mapped reasonably well on the peaks. The larger windows are properly placed between

the peaks.

The original idea was that the amount of reflections in an impulse response is an in-

creasing function in time and thus that a filterbank should follow this behavior. Such

a filterbank starts with the smallest windows at ~+ b and than over time the windows

grow slightly until the largest window is reached at the reverberant part of the impulse

response. A plot of such a filterbank can be found in figure 8.6. This concept did not

lead to satisfactory results, because the precise mapping of the peak and the window

is very important: if a peak occurred just between two windows it was spread in the

reconstruction. An example peak is marked with a green arrow in figure 8.6.

The other approach mentioned in section 7.2 was to switch to a smaller window after

a rising in the signal defined by equation 7.1. This method also has the advantage of

properly mapping the small windows on the peaks. In practice, only after tweaking the
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Figure 8.5 Match of the short windows with peaks in the impulse response
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Figure 8.6 Filterbank with gradually longer windows (red) and impulse response(blue)
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necessary parameters (given in equation 7.2) for a certain impulse response, the results

were good. However if another impulse response was used (with more reverb, only

discrete peaks etc.) the parameters had to be adjusted again. A value for � (the size of

a block over which the rise is calculated) and � (the threshold value for the rise factor)

of f R resp. bdc R only worked properly for some impulse responses. Other input signals

could need a � of
0

and � of bdc e for proper mapping of the filterbank with the peaks.

The disadvantage of the method, measuring a rise in signal, was that no general initial

parameter set could be given. However the other method, which uses a fixed number

of peaks, showed also not to be robust. The latter is the recommended option. The

amount of small windows needed for a proper reconstruction can only be determined

by more listening tests. The author of this thesis assumes that proper boundaries of this

parameter are
0

and �gh reflections and therefore tried this parameters in the listening

test.

8.3 Listening test

8.3.1 Test method

During the analysis of the impulse response reconstruction it is necessary to listen to

the signal to evaluate the correctness of the compression. However listening to such

a signal is very subjective and as stated in chapter 4 not all human ears are similar, so

you might be optimizing the result for your own hearing system. Therefore conducting

a listening test for multiple subject is done to gain more insight in the quality of the

coder.

A choice one can make is to let the subject listen to the impulse responses directly. This

is rather difficult and it requires a lot of training to interpret the results correctly and to

hear the subtle differences. For this reason it was decided to let the listeners evaluate the

convolved impulse response. The context in which this thesis is done is the application

of a Wave Field Synthesis system, therefore the listening tests were conducted in such

an environment.

The recommendation ITU-R BS.1116-1, ”Methods for the Subjective Assessment of Small

Impairments in Audio Systems Including Multichannel Sound Systems” [6] describes a

way to measure the impairments in multi-channel audio systems. This recommenda-

tion is used to evaluate the quality of multi-channel audio coders, such as the MPEG-2

AAC. This is different from testing convolved coded impulse responses; then it is not
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Figure 8.7 Screen shot of the program written for the listening tests

tried to evaluate an audio signal, but an acoustic environment. The listening tests done

to investigate the quality of the transform coder of this thesis are therefore inspired by

and not similar to tests accomplished by this paper.

To conduct subjective assessments in the case of small impairments is rather difficult.

The ITU-R standard proposes a double-blind triple-stimulus with hidden reference.

Such as test uses three stimuli which can be switched at any time by the user (A, B and

C). The first stimulus (A) contains the reference signal. In our case this is a dry input

signal convolved with the original impulse response. B or C is the hidden reference and

thus equal to A. The other signal (C if B is the hidden reference and vice versa) is the
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Impairment Grade

Imperceptible 5

Perceptible, but not significant 4

Slightly significant 3

Significant 2

Very significant 1

Table 8.2 Grades and descriptions

same dry signal, but then convolved with the reconstructed impulse response.

Since long- and medium term aural memory are unreliable, the test procedure should

rely exclusively on short-term memory. This is best done if a near instantaneous switch-

ing method is used in conjunction with the triple stimulus system described above. The

expert listeners will be able to point out the hidden reference, while the listeners who

have no clue, can be statistically left out of the final result.

Listeners give a grade for the difference between the supposed hidden reference and

the supposed reconstruction as given in table 8.3.1. This table differs form the ITU-R

recommendation, we used ’Significant’ instead of ’Annoying’. The recommendation is

written for audio coders where artifacts are easier qualified as annoying. Evaluating an

acoustic environment with WFS system is more complicated as most listeners have no

experience with the possible artifacts and therefore there is no standard for ’Annoying’.

Although it is better to let the listener switch between the stimuli with none visible

means, so being able to move around, in this test a computer program was used for the

listener to switch between the different stimuli and to grade them directly. A screenshot

of the used program can be found in figure 8.7.

8.3.2 Evaluating environment

To optimize the transform coder a lot of combinations of the free parameters have to be

evaluated. The result dependents on the dry input signal used. A proper listening test

however should not last for more than 20-30 minutes and experience suggests that 10

to 15 trials per session should be scheduled [6]. For this reason only two versions of the

parameters are used and only the transform coder is put to the test. The values of the

stimuli can be found in table 8.3.2 and are somewhat arbitrarily chosen.
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Session Reflections Small h(n) Large h(n) Environment Dry signal

1 8 64 4096 Much reverb Cello

2 8 64 4096 Much reverb Drums

3 8 64 4096 Much reverb Speech

4 16 128 2048 Much reverb Cello

5 16 128 2048 Much reverb Drums

6 16 128 2048 Much reverb Speech

7 16 128 2048 Less reverb Cello

8 16 128 2048 Less reverb Drums

9 16 128 2048 Less reverb Speech

Table 8.3 Description of the sessions in the listening test

Three different dry input signals were used, which tests various possible problems in

the transform coder. From audio coding listening test it is known that a castanet sam-

ple can point out pre-echo problems, a harpsichord sample shows artifacts in the high

frequency range and speech can give ringing artifacts 1.

The source signals in the WFS setup must be dry and therefore the choice was limited.

The cello is recorded especially for this purpose in the anechoic chamber, the speech

and drum samples come from a lexicon CD. The cello is used as a music signal, which

could be found in the ’real world’, as could be heard in the ’Concertgebouw’ and thus

fits with the acoustic environment used. The drum sample can point out problems

with sharp attacks and thus with the early reflections: the perception of the convolved

speech sample depends strongly on the accuracy in spectrum reconstruction. The ’less

reverb’ and ’much reverb’ environments in the table are shorthand notations for the

impulse responses from the ’Concertgebouw’ measurements near the source (’less re-

verb’) and far from the source (’much reverb’). In figures 8.8 and 8.9 an original and a

reconstructed impulse response near the source (the ’less reverb’-variant) are plotted.

8.3.3 Listening results

The listening test was done by 21 listeners (one listener did the test twice). One listener

made a lot of mistakes in filling in the answers and therefore his results were left out.

The listener taking the test twice reached almost similar results, so a total of 20 results

1Actually speech is usually encoded with a special speech encoder, better suited for this purpose than

an audio encoder, specialized in music.
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Figure 8.8 Time domain representation of the original and reconstructed impulse response us-

ing the transform coder

are used here.

In table 8.3.1 the grading of the test is given. In this section the difference grade is

used. The difference grade is defined by the grade the listener gave for the reconstruc-

tion minus the grade awarded to the hidden reference. So, a positive difference grade

means the listener choose the wrong answer (for example he gave the hidden refer-

ence 4 points and the reconstruction 5 points on the 8.3.1 scale). Logically, the lower

the difference grade, the larger the impairment was, if the impairment is defined as the

difference between the hidden reference and the reconstruction.

According to the ITU-R [6] recommendation the expertise of the listeners can be tested

with a t-test in which an individual result is tested against the distribution of difference

grades given by all users. All listeners were able to detect a substantial amount of im-
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Figure 8.9 Spectrum of the original and reconstructed impulse response using the transform

coder

pairments, therefore choosing the sessions over which the expertise test is carried out

is difficult (because of the low number of candidates for such a test). Therefore the sta-

tistical pitfall of shaping the data to the experimenter’s preconception is avoided here

by using the data of all listeners. Downside of this approach is that it can not be stated

explicit that an impairment close to zero difference grade equals a perfect reconstruc-

tion, because the best expert listeners could perhaps point out the hidden reference

correctly, but their answers are obfuscated by the other results.

The raw data of the perceptual listening test is given in table D.1. The mean difference

grades are plotted in figure 8.10, together with the 95%-confidence intervals found in

table D.2. To test whether the listener could distinct the hidden reference from the im-

paired signal, an analysis of variance (ANOVA) test is done. The results can be found
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in table D.3. If a margin of 5% is used, in session 2, 3, 8 and 9 the hidden reference and

impaired signal are distinguished successfully.
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Figure 8.10 Mean and confidence intervals of the grades, as outcome for the listening test

The results provide some insight in the strong and weak points of the transform coding

engine. The compression of the acoustic environment for playback of the recording of a

cello such as in session 1, 4 and 7, is under all tested parameters indistinguishable from

the original 2.

In the sessions with a dry drum or speech signal the difference between original and

reconstructed acoustic environment could be detected in the highest compression set-

ting (session 2 and 3). By just listening at the impulse response it was already suspected

that the chosen compression parameters led to artifacts. These impulse responses were

added to verify that using a WFS-system for the listening test is a sensible perceptual

test. Since the only difference in sessions 1,2,3 and sessions 4,5,6 was the difference

between carefully and recklessly chosen parameters this seems to be ascertained.

The last three sessions (7, 8, 9) were done with the same parameters as the middle three,

but in session 8 and 9 the original and reconstructed acoustic environment were de-

tected by the listeners. Apparently our transform coder, as provided until now, is better

in compressing impulse responses with much reverb or it is easier to hear artifacts in

impulse responses with more direct sound. The last two ways of looking at the result

2Note that the expert listeners may be able to detect small differences, as explained elsewhere in this

section.
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are comparable, both lead to the conclusion that the compression algorithm has to be

improved for such situations.



Chapter 9

Conclusion and Discussion

9.1 Conclusion

In this thesis a multidisciplinary spectrum of topics is covered, which include Wave

Field Synthesis, impulse responses and acoustic environments, audio coders, the hu-

man hearing system, tools and algorithms for audio analysis and manipulation and

perceptual listening tests. All these topics come together in the design of a transform

coder for acoustic environments. The final design for this coder is able to compress

such environments with a ratio of almost 150 for 44KHz, 16 bit input, which is in line

with the original goal of this research.

The modulated lapped transform is a proper transform for an impulse response coder

and makes it possible to exploit the perceptual properties of the human ear for data

reduction. The basics of audio coders, such as the AAC algorithm can be utilized in an

impulse encoder. A major difference lies in the switching of windows. The switching al-

gorithm employed by the MPEG 2 Audio coder is not exact enough for use in an impulse

response coder. Between the various switching models tested, the direct overlapping of

short windows with the highest peaks in the original signal gave the best results.

Keeping one output coefficient per critical band in a large block can lead to a reason-

able reconstruction of the frequency components. For the shorter blocks, laying to-

gether with the peaks in the impulse response, it is advantageous to keep all spectral

components to maintain the peaks exact.

When coding an impulse response with much reverb and carefully selected parame-

ters, the result was indistinguishable from the original impulse response when applied

79



80 Chapter 9: Conclusion and Discussion

to a WFS system. But when coding an acoustic environment where the direct sound

and early reflections dominate above the reverb, the chosen parameters or model were

not good enough: the original and the reconstructed acoustic environment were still

distinguishable by expert listeners.

9.2 Suggestions for future research

While the proposed transform coder reached good results under some, but not all cir-

cumstances, optimizing the encoder is recommend in the following way:i Further research on the number of early reflections encoded separately, the size

of the small and long windows to deploy. This can best be done by setting up a

large scale listening test.i Develop a better algorithm for reconstruction of the spectrum. Currently this is

done by linear interpolation, but it was found [8] that the quality of speech en-

coders improved significantly using ARMA models for reconstruction of the spec-

trum.i Use of codebooks in combination with vector quantization [32] to reach more

compression. This can be used as an extension on the coding principles discussed

in this thesis and will provide lossless compression based on the way the data is

stored, not on psycho-acoustic principles.

Apart from enhancing the current coder, it may be worth the effort to investigate com-

pression of impulse responses using the MPEG 4-CELP encoder. This parametric speech

encoder uses very different algorithms than the current coder. It is very specialized in

encoding speech, but perhaps some minor enhancements will make it employable for

impulse responses.

A total different route one can take is to employ the principle of temporal and spec-

tral masking and the use of bands to come up with a faster convolution engine than

the ones currently in use. This is rather difficult, but the reward is high, convolving

signals is a real bottleneck on a WFS system, but also on almost all digital recording sys-

tems. Furthermore a number of patents in this area make it impossible to use the most

advanced algorithms freely. Psycho-acoustic principles are used to compress impulse

responses to save disk space-bandwidth, but in a convolver these principles should be

used to reduce the number of multiplications.



Appendix A

Critical Band filterbank

Band no. Center freq. (Hz) bandwidth (Hz)

1 50 -100

2 150 100-200

3 250 200-300

4 350 300-400

5 450 400-510

6 570 510-630

7 700 630-770

8 840 770-920

9 1000 920-1080

10 1175 1080-1270

11 1370 1270-1480

12 1600 1480-1720

13 1850 1720-2000

14 2150 2000-2320

15 2500 2320-2700

16 2900 2700-3150

17 3400 3150-3700

18 4000 3700-4400

19 4800 4400-5300

20 5800 5300-6400

21 7000 6400-7700

22 8500 7700-9950

23 10.500 9950-12.000

24 13.500 12.000-15.500

25 19.500 15.500-
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Appendix B

Relation between the DFT & MDCT

The MDCT of a block of input signal ������� is defined as [10]S �ÕF��p á R� � /oÂÒ 
 Ä�¡ �������Ü�������·³ È [J� #� ��� ® � ¡ �4�ÕF ® bdc e ��� (B.1)

where ������� is the window function, � is the length of the input block, �  � k is the

number of transform coëfficients in each block and � ¡ is a constant equal to �|� ® �J�ÜG R .Write the above formula as

S �ÕF��! ôá R� � /oÂÒ 
 Ä�¡ »�¸ �������Ü������� . ¤ /21	T ¤ U < U ª ¬ ¤ 3D<�¡7¢ UA¬ ¬ L ¿
º  ôá R� � ¸ . 1=V ¤ 3s¬ ����W2�������

º
(B.2)

where » denotes the real part and � the Fourier transform.

� �ÕF��! � # ��� ® R �4�ÕF ® bdc e �R � (B.3)

W2������ . u Û:Ú@Þ� �������Ü������� (B.4)

And finally: S �ÕF��p á R� ; ���ÕF�� ; ³ È [J¸ R # � ¡ �ÕF ® bdc e �� �7X\���ÕF�� º (B.5)
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Appendix C

Window switch kernel

Y[Z]\_^a`cb[d1\eYcbgf1`8h[igjIk&\ml
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¬�frh1\8xr`[�¥s��Ib \ pgb1�mh4pmy�Ib \ prba�mhcp�s¦ba­q�ry7n
�_b \ pgb1�mh4p{sDb1­q�gy®­
�_bB\ prb1�]hcp�s¦b8y }�¯]¯]¯Yo¨/\ �_b \qp } \ pDwqkrf]f]§r�@zha\4�h1\4�|e° hrx4b \ok&\4�eh1\8���_b&`g�ok&\�hg±r`ri4k��Ib \4�]d[��`md�h1\qpBZ8imh�u8imd1u4hgi�j4hrxcbB\¤ka\8�eh1\4�\ch[� �_bB\�n£���&�r�tz²\ch[� �_bB\>z7�&�r�r�tz|e³ d[�
�8ho^gka\´pµuIfmba`
`[�choprbax[\ck]febB\�Ycbgf1`8h[igjIk&\ml
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Appendix D

Results of the perceptual tests

S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 Mean Variance

1 0 -1 -1 -1 0 -2 -2 -2 -0.89 1.05

-1 -2 -2 0 1 -1 -2 -3 -1 -1.22 1.20

-1 -2 -1 1 1 2 0 -1 -3 -0.44 1.59

-1 -3 -3 0 -1 0 -3 -3 -3 -1.89 1.36

1 -1 -1 -1 -1 -1 1 -3 -1 -0.78 1.20

-1 -2 -3 1 -1 -1 -3 -3 -3 -1.78 1.39

1 -2 -2 -1 0 -1 -1 -2 1 -0.78 1.20

-1 -2 -1 -1 0 1 2 -3 -2 -0.78 1.56

2 -1 -2 1 1 1 -2 -2 -3 -0.56 1.81

-2 -1 -3 1 -1 -1 1 -3 -3 -1.33 1.58

1 -1 -3 2 -1 2 2 -3 -2 -0.33 2.12

0 -1 -1 0 0 0 1 -1 -2 -0.44 0.88

1 -1 -1 -1 1 -1 1 -1 -1 -0.33 1.00

-3 -2 -4 -1 1 2 1 -4 -4 -1.56 2.40

2 -2 -4 1 -1 -1 -1 -3 -3 -1.33 1.94

1 -3 -2 -1 -1 -1 1 -4 -1 -1.22 1.64

-1 -2 -4 1 -2 1 -2 -4 -2 -1.67 1.80

-1 1 -2 1 -1 -1 3 -1 -2 -0.33 1.66

-1 -1 -3 -2 -2 0 -2 -4 -3 -2.00 1.22

-1 -3 -4 0 0 -2 0 -3 -3 -1.78 1.56

-0.2 -1.55 -2.35 0 -0.4 -0.1 -0.25 -2.65 -2.15 -1.07 1.09

Table D.1 Difference grades for all subjects for all sessions. Columns S 1-9 represent the nine

listening sessions. The rows represent the various subjects. The last row gives the

means of the columns.
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Mean From To

S 1 -0.20 -0.837 0.437

S 2 -1.55 -2.017 -1.083

S 3 -2.35 -2.882 -1.818

S 4 0 -0.504 0.504

S 5 -0.4 -0.866 0.066

S 6 -0.1 -0.666 0.466

S 7 -0.25 -1.094 0.594

S 8 -2.65 -3.137 -2.163

S 9 -2.15 -2.682 -1.618

Table D.2 95% Confidence interval for the listening test. Rows S 1-9 represents the nine listen-

ing sessions. The ’From’ and ’To’ columns depict the border values for the confidence

interval.

SS MS F P-value

S 1 0.40 0.40 0.73 0.40

S 2 24.03 24.03 57.97 0.00

S 3 55.22 55.22 82.14 0.00

S 4 0.00 0.00 0.00 1.00

S 5 1.60 1.60 4.22 0.05

S 6 0.10 0.10 0.21 0.65

S 7 0.63 0.63 0.62 0.44

S 8 70.23 70.23 129.86 0.00

S 9 46.23 46.23 87.17 0.00

Table D.3 Anova data for the listening test. Rows S 1-9 represents the nine listening sessions.

Further the results ’Between the groups’ are displayed, first the Residue Sum K�K , then

the Mean Squares
� K , the test ratio À and the probability Á for À .
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