

August 28, 2003

Transform coding of audio impulse responses

M. Sc. Thesis

Jochem van der Vorm

Supervisors: prof. dr. ir. A. Gisolf, dr. ir. D. de Vries

August 28, 2003

Delft University of Technology

1. Introduction

- (a) Context
- (b) Research goals

2. Theory

- (a) Audio impulse responses
- (b) Coding
- (c) Transforms

3. Proposed codec

- (a) Overview
- (b) Windowing
- (c) Spectral coding

4. Results

- (a) Plots and observations
- (b) Listening test

5. Conclusions & suggestions

- (a) Conclusions
- (b) Suggestions
- (c) Questions

Introduction - Context

- Carrouso project => Creative, assessing, and rendering in real-time of high-quality audiovisual environment in MPEG-4 context.
- Wave Field Synthesis => Developed at TU Delft, a method for spatial and temporal reproduction of a sound field.
- Compression => Since 70's speech and later music is compressed to save bandwidth, using a wide collection of methods, most well-known nowadays is MP3.

Introduction - Context

Traditional multi-channel audio (4 audio channels transmitted)

August 28, 2003

Delft University of Technology

Introduction - Context

Possible WFS approach (1 audio channel + acoustics transmitted)

August 28, 2003

Delft University of Technology

Introduction - Research goals

- Develop coding structure for audio impulse responses
- Reconstruction indistinguishable from original (when 'used')
- Compression factor must be (much) higher than music coders
- Model must apply to a wide range of inputs (different 'acoustical environments')

1. Introduction

- (a) Context
- (b) Research goals

2. Theory

- (a) Audio impulse responses
- (b) Coding
- (c) Transforms

3. Proposed codec

- (a) Overview
- (b) Windowing
- (c) Spectral coding

4. Results

- (a) Plots and observations
- (b) Listening test

5. Conclusions & suggestions

- (a) Conclusions
- (b) Suggestions
- (c) Questions

August 28, 2003

Theory - Audio impulse responses

- 1 impulse response => reaction of a system on a pulse (δ)
- Can be measured with noise-like or sweep signal (and deconvolving)
- Multiple impulse responses define an 'acoustic environment' for an enclosure
- Software packages can be used to approximate impulse responses using ray-tracing and mirror image source models

elft

Theory - Audio impulse responses

Theoretical and measured impulse response

August 28, 2003

Delft University of Technology

Theory - Coding

Psycho-acoustic analysis

- Threshold of hearing and high frequency limit
- Temporal masking
 - Forward masking (length: 50-200 ms).
 - Backward masking (length: 5 ms).
- Spectral masking => existence of 'critical bands'

Theory - Coding

Threshold of hearing & high frequency limit

August 28, 2003

Delft University of Technology

Theory - Coding

Psycho-acoustic analysis

- Threshold of hearing and high frequency limit
- Temporal masking
 - Forward masking (length: 50-200 ms).
 - Backward masking (length: 5 ms).
- Spectral masking => existence of 'critical bands'

Bark scale converts frequency to critical band number. Zwicker:

$$z(f) = 13 \arctan(0.00076f) + 3.5 \arctan[(\frac{f}{7500})^2]$$

August 28, 2003

Theory - Transforms

- Transform will be applied in blocks
- Discrete Fourier Transform needs overlap-add or overlap-save
- Windowing gives a better frequency response

$$X(k) = \frac{1}{M} \sum_{n=0}^{M-1} x(n) e^{-j\frac{\pi j k n}{M}}$$

ŤUDelft

Transform coding of audio impulse responses

Theory - Transforms

$$h_{hf}(n) = \sin\left[\frac{\pi}{N}(n+\frac{1}{2})\right]$$

Half-sine window (as used in MPEG-2)

August 28, 2003

Delft University of Technology

Theory - Transforms

Problems with the DFT

- Block-band edge effects
- No perfect reconstruction in conjunction with a filterbank
- Time domain aliasing for different window sizes
- DFT coefficients are not uncorrelated (energy compaction is not optimal)

Theory - Transforms

Solution: Use Modulated Lapped Transform

- Basis of double length: critical sampling (2N samples provide N coefficients)
- Perfect reconstruction with filterbank and 2N samples
- Time domain aliasing cancellation
- Can be calculated using the DFT => fast
- Energy compaction is also not optimal

Theory - Transforms

Modified Discrete Cosine Transform (MDCT)

Transformation:

$$X(m) = \sum_{k=0}^{N-1} x(k)h(k)\cos(\frac{\pi}{2N}(2k+1+\frac{N}{2})(2m+1)) \quad m = 0, \cdots, \frac{N}{2} - 1$$

Inverse transformation:

$$y(p) = \frac{4}{N} h(p) \sum_{m=0}^{\frac{N}{2}-1} X(m) \cos\left(\frac{\pi}{2N} (2k+1+\frac{N}{2})(2m+1)\right) \quad m = 0, \cdots, N-1$$

Theory - Transforms

Perfect reconstruction conditions: $h^{2}(n) + h^{2}(n + M) = 1$ h(2M - 1 - n) = h(n)

For example the half sine window:

$$h(n) = \sin\left[\frac{\pi n}{N}\right]$$
 } $n = 0 \cdots N - 1$

August 28, 2003

1. Introduction

- (a) Context
- (b) Research goals

2. Theory

- (a) Audio impulse responses
- (b) Coding
- (c) Transforms

3. Proposed codec

- (a) Overview
- (b) Windowing
- (c) Spectral coding

4. Results

- (a) Plots and observations
- (b) Listening test

5. Conclusions & suggestions

- (a) Conclusions
- (b) Suggestions
- (c) Questions

Proposed codec - Overview

Overview of the transform encoder.

August 28, 2003

Proposed codec - Overview

Overview of the transform decoder.

August 28, 2003

Delft University of Technology

Proposed codec - Windowing

Using gradually longer windows

Proposed codec - Windowing

Window switching scheme in MPEG-2

Proposed codec - Windowing

Using a window switching scheme

Proposed codec - Windowing

$$h_{start} = \begin{cases} h_{long}(n), & 0 \le n \le M - 1\\ 1, & M \le n \le M + \frac{M}{3} - 1\\ h_{short}(n - M), & M + \frac{M}{3} \le n \le M + \frac{2M}{3} - 1\\ 0, & M + \frac{2M}{3} \le n \le 2M - 1 \end{cases}$$

August 28, 2003

Proposed codec - Spectral coding

Bark scale converts frequency to critical band number. Zwicker:

$$z(f) = 13 \arctan(0.00076f) + 3.5 \arctan[(\frac{f}{7500})^2]$$

August 28, 2003

Proposed codec - Spectral Coding

Encoding

- 1. Sum the energies of one Bark band in the spectrum
- 2. Divide by number of samples in that band

Decoding

- 1. Parameters are placed at the Bark center frequency
- 2. These points provide a spectrum line with linear interpolation
- 3. Spectrum line is multiplied with white noise

Proposed codec - Spectral Coding

MDCT component in log(samplenr)

1. Introduction

- (a) Context
- (b) Research goals

2. Theory

- (a) Audio impulse responses
- (b) Coding
- (c) Transforms

3. Proposed codec

- (a) Overview
- (b) Windowing
- (c) Spectral coding

4. Results

- (a) Plots and observations
- (b) Listening test

5. Conclusions & suggestions

- (a) Conclusions
- (b) Suggestions
- (c) Questions

Results - Plots and observations

Parameter	Transform coder		
Number of frequency bands	26		
Smallest time window	128		
Longest time window	2048		
Percentage short windows	12.5 %		
Total number of parameters	3488		

Some typical values of coder parameters, leading to a compression of 150x for an impulse response of 44.1 KHz, 16 bit

August 28, 2003

Results - Plots and observations

Time domain representation of the original and reconstructed impulse response (much reverb)

Results - Plots and observations

Spectrum of the original and reconstructed impulse response (much reverb)

Results - Plots and observations

Time domain representation of the original and reconstructed impulse response (less reverb)

Results - Plots and observations

Spectrum of the original and reconstructed impulse response (less reverb)

Results - Listening test

- Idea derived from ITU-R BS.1116-1, Methods for the subjective assessments of small impairments in audio systems including multichannel sound systems
- 21 listeners took part in the test
- Nine different sessions, done with 'double-blind triple stimulus with hidden reference'
- Expertise of listeners measured with *t*-test
- Statistical analysis with ANOVA model

ŤUDelft

Transform coding of audio impulse responses

Results - Listening test

Session	Reflections	Small h(n)	Large h(n)	Environment	Dry signal
1	8	64	4096	Much reverb	Cello
2	8	64	4096	Much reverb	Drums
3	8	64	4096	Much reverb	Speech
4	16	128	2048	Much reverb	Cello
5	16	128	2048	Much reverb	Drums
6	16	128	2048	Much reverb	Speech
7	16	128	2048	Less reverb	Cello
8	16	128	2048	Less reverb	Drums
9	16	128	2048	Less reverb	Speech

August 28, 2003

Results - Listening test

August 28, 2003

Delft University of Technology

1. Introduction

- (a) Context
- (b) Research goals

2. Theory

- (a) Audio impulse responses
- (b) Coding
- (c) Transforms

3. Proposed codec

- (a) Overview
- (b) Windowing
- (c) Spectral coding

4. Results

- (a) Plots and observations
- (b) Listening test

5. Conclusions & suggestions

- (a) Conclusions
- (b) Suggestions
- (c) Questions

Conclusions & Suggestions - Conclusions

- The modulated lapped transform is a proper transform for coding of audio impulse responses (IR's)
- Window switching => short windows should overlap with the reflections in the IR
- Reconstructed IR approximates original if reverb is above certain level
- The compression factor can be 150x 100x
- Below this level of reverb reconstruction the IR can be distinguished from the original IR

Conclusions & Suggestions - Suggestions

Enhance current coder:

- More research of proper parameters like, number of reflections, window size and quantization of the parameters => large scale listening test
- Research better algorithm for encoding and decoding of the spectrum (instead of linear interpolation)
- Use of vector quantization and codebooks for more (lossless) compression (useful, but falls outside physics field)

Conclusions & Suggestions - Suggestions

Different approaches to try:

- Use a parametric coder in time domain (for example MPEG-2 CELP).
- Optimize the coder for fast convolution, instead of bandwidth, by combining the coder with partitioned convolution

Questions?

- Ask questions now!
- Read my thesis report http://vorm.net/pdf/verslag.pdf
- Contact me: jochem@njbg.nl

Thanks for your attention!

Extra sheet I

Music encoding algorithms save the calculated floor and the residue. Calculations are done in the frequency domain.

August 28, 2003

Delft University of Technology

ŤUDelft

$$h(n) = \sin\left[\frac{1}{2}\pi\sin\left(n + \frac{1}{2}\right)^2\right]$$

Designed window and its frequency selectivity

August 28, 2003

Delft University of Technology

Extra sheet III

Using gradually longer windows

- Scales naturally with different impulse responses
- Does not exactly match peaks
- Does not fulfill perfect reconstruction conditions but can be used in conjunction with FFT

ŤUDelft

$$h_{kbd}(n) = \sqrt{\frac{\sum_{i=0}^{n} \mathcal{W}(i)}{\sum_{i=0}^{N-1} \mathcal{W}(i)}}$$

Kaiser Bessel $\mathcal{W}(i)$ Derived (KBD) window ($\nu = 6$)

August 28, 2003

Delft University of Technology

Extra sheet V

Zwicker's formula for frequency to Bark scale is:

 $z(f) = 13 \arctan(0.00076f) + 3.5 \arctan[(\frac{f}{7500})^2]$

Traunmüller proposes:

$$z(f) = \frac{26.81f}{1960+f} - 0.53$$

(and additional equations for low and high frequencies)